The in-vitro Antibiotic Sensitivity Test of Pasteurella multocida Isolated from Layer and Breeder Chickens
Main Article Content
Abstract
The current study aimed to characterize Pasteurella multocida (P. multocida) isolates from layers and breeder chickens in Egypt regarding in-vitro antibiotic sensitivity and resistance pattern. In doing so, spleen, liver, lungs, and heart, were taken aseptically from chickens suffering from a drop in egg production, septicemia, respiratory manifestations, and mortalities between 2016 and 2017. To isolate bacteria, samples were grown on a modified Das medium. Moreover, microscopic appearance and biochemical characteristics were used to identify pure colonies of P. multocida isolates. In the next step, in-vitro antibiotic sensitivity testing was performed on the isolated P. multocida. The findings indicated that P. multocida was found in 36 isolates out of 330 investigated chicken flocks. Small glistering, mucoid, grayish, and dew drop P. multocida colonies were discovered during the culture analysis. Pasteurella multocida isolates were Gram-negative coccobacilli using the microscope. Catalase, indole generation, H2S production, nitrate reduction, and oxidase tests were all positive for the sample; however, methyl red, urease activity, Voge's proskaur, and gelatin liquefaction tests were all negative. They also fermented glucose, mannose, fructose, sucrose, mannitol, xylose, and sorbitol without producing gas but not lactose, arabinose, maltose, inositol, salicin, raffinose, or dulcitol. Isolated P. multocida strains were sensitive to tetracycline, erythromycin, trimethoprim/sulphamethoxazole, norfloxacin, ofloxacin, penicillin, chloramphenicol, and azithromycin, while resistant to ampicillin and clindamycin. Cefoperazone, gentamycin, and streptomycin all showed intermediate sensitivity.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Office International des Epizooties (OIE). Terrestrial Manual. 4th Edition, France, 2018; p. 895-905. Available at: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.09_FOWL_CHOLERA.pdf
Moemen AM, Mohamed‐Wael AM, Ahmed IA, Awad AI, and Mohamed SA. Pasteurella multocida in backyard chickens in Upper Egypt: incidence with polymerase chain reaction analysis for capsule type, virulence in chicken embryos and antimicrobial resistance. Vet Ital. 2012; 48(1): 77‐86. Available at: https://www.izs.it/vet_italiana/2012/48_1/77.pdf
Christensen JP, and Bisgaard M. Fowl cholera. Rev Sci Tech. 2000; 19(2): 626-637. DOI: https://doi.org/10.20506/rst.19.2.1236
Levy SB. The challenge of antibiotic resistance. Sci Am. 1998; 278(3): 46-53. DOI: https://doi.org/10.1038/scientificamerican0398-46
Rimler RB, and Glisson JR. Fowl cholera. In Diseases of Poultry, 10th Ed., Calnek BW, Barnes HJ, Beard CW, McDougald LR, and Saif, YM. Iowa State University Press, Ames, 1997; 143-161. Available at: https://www.kriso.ee/diseases-poultry-10th-edition-db-9780813804279.html
Caprioli A. Busani L, and Helmuth R. Monitoring of antibiotic resistance in bacteria of animal origin: Epidemiological and microbiological methodologies. Int J Antimicrobial Agents. 2000; 14(4): 295-301. DOI: https://doi.org/10.1016/s0924-8579(00)00140-0
Arora AK, Virmani SKJ, and Oberoi MS. Isolation, characterization and antibiogram of Pasteurella multocida isolates from different animal species. Indian J Anim Sci. 2005; 75: 749-752. Available
at: https://epubs.icar.org.in/index.php/IJAnS/article/view/8150
Phillips I. Cowan and Steel's Manual for the Identification of Medical Bacteria. J Clin Pathol. 1993; 46(10): 975. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC475784/pdf/jclinpath00141-0084a.pdf
Kumar AA, Shivachandra SB, Biswas A, Singh VP, and Srivastava SK. Prevalent serotypes of Pasteurella multocida isolated from different animal and avian species in India. Vet Res Commun. 2004; 28(8): 657-567. DOI: https://doi.org/10.1023/b:verc.0000045959.36513.e9
Quinn PJ, Carter ME, Markey BK, and Carter GR. Pasteurella sp. Clinical Veterinary Microbiology, Wolfe Publishing, London. 1994; 258. DOI: https://doi.org/10.1111/j.2042-3306.1995.tb03032.x
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disks and dilution susceptibility tests for bacteria isolated from animals; Approved Standard. Clinical and Laboratory Standards Institute, Wayne. 2018. Available at: https://clsi.org/media/2321/vet08ed4_sample.pdf
Pedersen K, Dietz HH, Jørgensen JC, Christensen TK, Bregnballe T, and Andersen TH. Pasteurella multocida from outbreaks of avian cholera in wild and captive birds in Denmark. J Wildl Dis. 2003; 39(4): 808–816. DOI: https://doi.org/10.7589/0090-3558-39.4.808
Muhairwa AP, Christensen JP, and Bisgaard M. Investigations on the carrier rate of Pasteurella multocida in healthy commercial poultry flocks and flocks affected by fowl cholera. Avian Pathol. 2000; 29(2): 133–142. DOI: https://doi.org/10.1080/03079450094162
Kawamoto E, Sawada T, and Maruyama T. Prevalence and characterization of P. multocida in rabbits and their environment in Japan. Nihon Juigaku Zasshi. 1990; 52(2): 915-921. DOI: https://doi.org/10.1292/jvms1939.52.915
Purushothaman V, Jayathangaraj TG. Prabhakar A, and Prabhakar P. Incidence of avian pasteurellosis in wild geese in captivity. Tamil Nadu J Vet Anim Sci. 2008; 4(5): 195-197.
Balasubramanium A, and Gopalakrishnamurthy TR. Characterization of Pasteurella multocida from a non-descript fowl. Indian J Field Vet. 2009; 4: 55.
Dashe YD, Raji MA, Abdu PA, Oladele BS, and Sugun MY. Multidrug resistant Pasteurella multocida strains isolated from chickens with cases of fowl cholera in Jos, Nigeria. Int J Poult Sci. 2013; 12(10): 596-600. DOI: https://doi.org/10.3923/ijps.2013.596.600
Sarangi LN, and Panda HK. Antibiotic sensitivity of avian isolates of Pasteurella multocida. Indian Vet J. 2011; 88 (6): 85–86.
Hirsh DC, Hansen LM, Dorfman LC, Snipes RP, Carpenter TE, Hird DW, and McCapes R H . Resistance to antimicrobial agents and prevalence of R plasmids in Pasteurella multocida from turkeys. Antimicrob Agents Chemother. 1989; 33(5):670–673. DOI: https://doi.org/10.1128%2Faac.33.5.670
Shivachandra SB, Kumar AA, Biswas A, Ramakrishnan MA, Singh VP, and Srivastava SK. Antibiotic sensitivity patterns among Indian strains of avian Pasteurella multocida. Trop Anim Health Prod. 2004; 36: 743.-750. DOI: https://doi.org/10.1023/b:trop.0000045950.35070.7f
Kamruzzaman M, Islam M, Hossain MM, Hassan MK, Kabir MHB, Sabrin MS, and Khan MSR. Isolation, characterization and antibiogram study of Pasteurella multocida isolated from ducks of Kishoreganj District, Bangladesh. Int J Anim Resources. 2016; 1(1): 69-76. Available at: http://archive.sau.edu.bd/public/images/upload_images/Paper9_j_dvm.pdf
Victor AA . Mathew BA, Olubukunola OA, Ayo AO, and Samuel AO. Prevalence and antibiotic resistance of Pasteurella multocida isolated from chicken in Ado-Ekiti metropolis. Int J Sci World, 2016; 4(2): 40-42. DOI: https://doi.org/10.14419/IJSW.V4I2.6273
Atere VA, Bamikole AM, and Ajurojo OA. Antibiotic susceptibility of bacteria isolated from poultry feeds sold in Ado Ekiti,
Nigeria. J Advancement Med Life Sci. 2015; 3I2. DOI: https://doi.org/10.5281/ZENODO.893566
Rosenau A, Labigne A, Escande F, Courcoux P, and Philippon A. Plamid mediated ROB-1 beta-lactamase in Pasteurella multocida from a human specimen. Antimicrob Agents Chemother. 1991; 35(11): 2419-2422. DOI: https://doi.org/10.1128%2Faac.35.11.2419
Everlon CR, Patrick JB, Renato PM, and Fernando AÁ. Identification and Antimicrobial susceptibility patterns of Pasteurella multocida isolated from chickens and Japanese quails in Brazil. Braz J Microbiol. 2013; 44(1): 161-164. DOI: https://doi.org/10.1590/s1517-83822013000100023
San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N, Montserrat L, Dominguez L, and Zorn GB. Multi resistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob Agents Chemother. 2009; 53: 3399-3404. DOI: https://www.doi.org/10.1128/aac.01522-08