Effects of Heavy Metal Contamination on Blood Parameters, Egg Quality, and Histopathology of Layer Chickens influenced by Crude Oil Exploration

Main Article Content

Jerome Unuavwogbikuomawho Unukevwere
Osayande Unity Daniel
Odu Olatunbosun

Abstract

Introduction: Petrochemical pollution from oil spills, gas flaring, and effluents containing heavy metals is prevalent in the oil-producing regions of Delta State, Nigeria, posing systemic health risks to humans and animals. The present study assessed the effects of crude oil exploration on laying chickens across 21 poultry farms in seven zones of Delta State, Nigeria.                                                                                                                                                  


Materials and methods: Blood, egg, and tissue samples (liver and kidney) from 105 layers, comprising 15 chickens from each zone (Aniocha, Ijaw, Ika, Isoko, Itsekiri, Ukwani, and Urhobo), were analyzed for hematological, biochemical, and histological parameters.                                                                                                                                                             


Results: The current findings revealed that packed cell volume (PCV) was significantly higher in Urhobo (45.56%) and Ijaw (39.22%) compared to the normal range of PCV. Hemoglobin levels ranged from 12.77 g/dL (Aniocha) to 15.46 g/dL (Ijaw), while white blood cell counts varied from 6.37 µL (Aniocha) to 8.40 µL (Urhobo). Red blood cell counts were significantly lower than the normal range from 4.01 µL (Isoko) to 5.10 µL (Urhobo). Serum albumin levels peaked in Urhobo (5.27 g/dL), whereas lower values were observed in Isoko and Ijaw farms. Alanine aminotransferase was elevated in Urhobo (43.83 IU/L), Itsekiri (38.72 IU/L), and Ukwani (44.51 IU/L), exceeding physiological norms. Cadmium concentrations exceeded permissible limits across all zones, with the highest level in Urhobo (21.032 ppm). The current findings highlighted the presence of environmental toxicity associated with oil-related pollution, signifying disruptions in blood chemistry, egg quality, and organ function in poultry.                                                                                                             


Conclusion: Elevated levels of hematological and biochemical parameters beyond physiological norms pose a threat to animal health, compromise food safety, and endanger public health, underscoring the critical need for environmental monitoring and remediation in Delta State, Nigeria.

Article Details

How to Cite
Unukevwere, J. U., Unity Daniel, O., & Olatunbosun, O. (2025). Effects of Heavy Metal Contamination on Blood Parameters, Egg Quality, and Histopathology of Layer Chickens influenced by Crude Oil Exploration. Journal of World’s Poultry Science, 4(2), 21–29. https://doi.org/10.58803/jwps.v4i2.70
Section
Original Articles

References

Nwadinigwe AO, and Onyeidu EG. Bioremediation of crude oil-polluted soil using bacteria and poultry manure monitored through soybean productivity. Pol J Environ Stud. 2012; 21(1): 171-176. Available at: https://www.pjoes.com/pdf-88739-22598?filename=Bioremediation%20of%20Crude.pdf

Chikere CB, Okpokwasili GC, and Chikere BO. Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech. 2011; 1: 117-138. DOI: 10.1007/s13205-011-0014-8

Chettri D, Verma AK, and Verma AK. Bioaugmentation: an approach to biological treatment of pollutants. Biodegrad. 2024; 35(2): 117-135. DOI: 10.1007/s10532-023-10050-5

Edu I, Gerald GI, Inoh GG, Offiong NO, and Etim BB. Physicochemical characteristics and health risk assessment of drinking water sources in Okoroette community, Eastern coast of Nigeria. Amer J Water Res. 2017; 5(1): 13-23. DOI: 10.12691/ajwr-5-1-3

Ordinioha B, and Brisibe S. The human health implications of crude oil spills in the Niger Delta, Nigeria: An interpretation of published studies. Niger Med J. 2013; 54(1): 10-16. DOI: 10.4103/0300-1652.108887

Nwaichi EO, Wegwu MO, and Onyeike EN. Characterization and safety evaluation of the impact of hydrocarbon contaminants on ecological receptors. Bull Environ Contam Toxicol. 2010; 85, 199-204. DOI: 10.1007/s00128-010-0062-5

Ede PN, and Edokpa DO. Regional air quality of Nigeria’s Niger Delta. Open J Air Pollut. 2015; 4(1): 7-15. DOI: 10.4236/ojap.2015.41002

Akporhuarho PO, Udeh I, Isikwenu, and Otobo O. Effects of crude oil-polluted water on the haematology of cockerels reared under intensive system. Int J Poult Sci. 2011; 10(4): 287-289. Available at: https://web.archive.org/web/20150927072038id_/http://www.pjbs.org:80/ijps/fin1890.pdf

DekoFehinti OO, Omotoyi IO, Oloremu AG, and Abayomi TG. Heavy metals distribution of large and lipid profile in the stomach of cows grazed in Akugbe-Akoko-Ondo State, Nigeria. Afr J Biochem Res. 2012; 6(11): 146-149. DOI: 10.5897

Worgu CA. Heavy metal concentration in some seafood commonly consumed in selected parts of the River State. J Appl Chem Agric Res. 2000; 2: 44-47. Available at: https://www.scirp.org/reference/referencespapers?referenceid=3602304

Adene DF, and Oguntade AE. The structure and importance of the commercial and village-based poultry systems in Nigeria. FAO Report. 2006. Available at: http://www.fao.org/docs/eims/upload//214281/poultrysector_nga_en.pdf

Jimoh OA, Osayande UD, Ayodele SO, and Ihejirika UDG. Nutraceutical effects of snot apple powder on triiodothyronine, oxidative stress markers, haematology, and growth of broiler chickens. Black Sea J Agric. 2025; 8(1): 41-50. DOI: 10.47115/bsagriculture.1550787

Szablewski T, Stuper-Szablewska K, Cegielska-Radziejewska R, Tomczyk Ł, Szwajkowska-Michałek L, Nowaczewski S. Comprehensive assessment of environmental pollution in a poultry farm depending on the season and the laying hen breeding system. Animals. 2022; 12(6):740. DOI: 10.3390/ani12060740

Rodenburg TB, Buitenhuis AJ, Ask B, Uitdehaag KA, Koene P, van der Poel JJ, et al. Genetic and phenotypic correlations between feather pecking and open-field response in laying hens at two different ages. Behav Genet. 2004; 34: 407-415. DOI: 10.1023/B:BEGE.0000023646.46940.2d

Bancroft JD, and Gamble M. Theory and practice of histological techniques. 6th ed. Churchill livingstone, Elsevier; 2008. Available at: https://www.scirp.org/reference/referencespapers?referenceid=1582193

Szunyogova E, and Parson SH. Histological and histochemical methods, theory and practice, 5th ed. J Anat. 2016; 228(5): 887. DOI: 10.1111/joa.12390

Feldman AT, and Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol. 2014; 1180: 31-43. DOI: 10.1007/978-1-4939-1050-2_3

Jones MP. Avian hematology. Vet Clin North Am Exot Anim Pract. 2015; 18(1): 51-61. DOI: 10.1016/j.cvex.2014.09.012

Obajuluwa OV, Sanwo KA, Egbeyale LT, Fafiolu AO, Osayande UD, and Eguaoje AS. Nutrient digestibility of broiler chickens fed larvacide and yohimbe bark powder supplemented diets. Nig. J. of Ani Prod. 2024; 896-899. DOI: 10.51791/njap.vi.5857

Oleforuh-Okoleh VU, Sikiru AB, Kakulu II, Fakae BB, Obianwuna UE, Shoyombo AJ, et al. Effect of exposure to crude oil polluted environment on hematological and serological indices in chickens: Variability in breed sensitivity. Society. 2024. DOI: 10.21203/rs.3.rs-4198608/v1

Alabi OM, Aworinde HO, Adebayo S, Akinwumi AO, Ayandiji A, and Tatar A. Data analytics-based evaluation of blood indices and adaptation of medicated and non-medicated broiler chickens under humid tropical conditions. Transl Anim Sci. 2024; 16(8): txae040. DOI: 10.1093/tas/txae040

Manyeula F, Mlambo V, Marume U, and Sebola NA. Nutrient digestibility, haemo-biochemical parameters and growth performance of an indigenous chicken strain fed canola meal-containing diets. Trop Anim Health Prod. 2019; 51(8): 2343-2350. DOI: 10.1007/s11250-019-01949-4

Idahor KO, Adua MM, Osayande UD, Kaye J, Igoche LE et al. Haematological indices, feed and water intake of grower rabbits (Oryctolagus cuniculus) fed graded levels of shea butter (Vitellaria paradoxa C.F. Gaertn.) nut meal. Int J of Res Stud in Bio. 2018; 6(3): 11-17. DOI: DOI: 10.20431/2349-0365.0603003

Dairo FAS, and Ogunlade SW. Growth performance and haematological indices of broiler chickens fed on rice husk supplemented with oyster mushroom (Pleurotus ostreatus) and brozyme enzyme. Int J Poult Sci. 2022; 21(1): 18-27. DOI: 10.3923/ijps.2022.18.27

Akangbe EE, Odukoya, AA, and Osayande UD. Effect of Moringa oleifera saponin extract on serum enzymes and immunomodulatory doses administered in Wistar rats. Niger J Anim Prod. 2024; 219-221. DOI: 10.51791/njap.vi.4987

Osayande UD, and Ilaboya I. Utilization of cottonseed meal with or without phytase supplementation on performance and haematological parameters during short term feeding periods in broiler chickens. Fudma J Sci. 2024; 8(3): 184-189. Available at: https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/2319

Owosibo AO, Odetola OM, Odunsi OO, Adejinmi OO, and Lawrence-Azua OO. Growth, haematology and serum biochemistry of broilers fed probiotics based diets. Afr J Agri Res. 2013; 8(41): 5076-5081. DOI: 10.5897/AJAR2013.7593

Idowu KR, Ibigbami DJ, Idowu OPA, Adeyemo AA, Iyanda AI, and Adeyemi OA. Haematological and serum biochemical parameters of Noiler chickens fed with different biotic additives at chicks phase. Nig J of Anim Prod. 2022; 48(6): 258-266. DOI: 10.51791/njap.v48i6.3306

Unukevwere J, Kuka T, Oghenebrorhie O, Okpara O, and Odu O. Assessing levels of heavy metals in broiler chickens reared in crude oil exploration areas of Delta State, Nigeria. J World Poult Sci. 2025; 4(1): 15-20. DOI: 10.58803/jwps.v4i1.53

Zraly Z, Pisarikova B, Trckova M, and Herzig I. Effect of dietary aflatoxin B1 on the health status and performance of pigs. Vet Med. 2008; 53(6): 299-306. DOI: 10.17221/1943-VETMED

Kim E, Wickramasuriya SS, Shin TK, Cho HM, Macelline SP, Lee SD, et al. Bioaccumulation and toxicity studies of lead and mercury in laying hens: Effects on laying performance, blood metabolites, egg quality and organ parameters. J Poult Sci. 2019; 56(4): 277-284. DOI: 10.2141/jpsa.0180118

Abdulmalik Z, Shittu M, Adamu S, Ambali SF, and Oyeyemi BF. Assessment of blood mercury, immune response, heat shock and oxidative stress marker in free-ranging chicken (Gallus Gallus domesticus) from gold mining areas in Zamfara State, Nigeria. J of Hazard Mater Adv. 2022; 8: 100176. DOI: 10.1016/j.hazadv.2022.100176

Aljohani ASM. Heavy metal toxicity in poultry: A comprehensive review. Front Vet Sci. 2023; 10: 1161354. DOI: 10.3389/fvets.2023.1161354

Liu J, Qu W, and Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol. 2009; 238(3): 209-214. DOI: 10.1016/j.taap.2009.01.029

Fernandez A, Verde MT, Gascon M, Ramos J, Gomez J, Luco DF, et al. Variations of clinical biochemical parameters of laying hens and broiler chickens fed aflatoxin‐containing feed. Avian Pathol. 1994; 23(1): 37-47. DOI: 10.1080/03079459408418973

Nwaogu LA, and Onyeze GOC. Effect of chronic exposure to petroleum hydrocarbon pollution on oxidative stress parameters and histology of liver tissues of native fowl (Gallus domesticus). Int J Biochem Res Rev. 2014; 4(3): 233-242. DOI: 10.9734/IJBCRR/2014/7336

Kamaruzaman INA, Ng KY, Hamdan RH, Shaharulnizim N, Zalati CWSCW, et al. Complex chronic respiratory disease concurrent with coccidiosis in broiler chickens in Malaysia: A case report. J Adv Vet Anim Res. 2021; 8(4):576-580. DOI: 10.5455/javar.2021.h547

Tsipoura N, Burger J, Newhouse M, Jeitner C, Gochfeld M, and Mizrahi D. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands. Environ Res. 2010; 110(8): 775-783. DOI: 10.1016/j.envres.2011.05.013

Korish MA, and Attia YA. Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals. 2020; 10(4): 727. DOI: 10.3390/ani10040727

World health organization (WHO). Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. 2022. Available at: https://www.who.int/publications/i/item/9789240045064

Cobbina SJ, Chen Y, Zhou Z, Wu X, Zhao T, Zhang Z, et al. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J Hazard Mater. 2015; 294: 109-120. DOI: 10.1016/j.jhazmat.2015.03.057

Iqbal H, Shafique MA, and Khan MJ. Evaluation of heavy metals concentration in poultry feed and poultry products. J Sports Med Ther. 2023; 8(3): 30-35. DOI: 10.29328/journal.jsmt.1001069

Aliu H, Dizman S, Sönmezoğlu ÖA, Odabaş N, Aksoy T, Koçak M, et al. Comparative study of heavy metal concentration in eggs. J Food Sci. 2021; 86(7): 3197-3206. DOI: 10.1155/2021/6615289

Okoye P, Ajiwe V, Okeke O, Ujah I, Asalu U, and Okeke D. Estimation of heavy metal levels in the muscle, gizzard, liver and kidney of broiler, layer and local (cockerel) chickens raised within Awka metropolis and its environs, Anambra State, South Eastern Nigeria. J Environ Prot. 2015; 6(6): 609-613. DOI: 10.4236/jep.2015.66055

Kabeer MS, Hameed I, Kashif SU, Khan M, Tahir A, Anum F, et al. Contamination of heavy metals in poultry eggs: A study presenting relation between heavy metals in feed intake and eggs. Arch Environ Occup Health. 2021; 76(4): 220-232. DOI: 10.1080/19338244.2020.1799182

Aendo P, Netvichian R, Viriyarampa S, Songserm T, and Tulayakul P. Comparison of zinc, lead, cadmium, cobalt, manganese, iron, chromium and copper in duck eggs from three duck farm systems in Central and Western, Thailand. Ecotoxicol Environ Saf. 2018; 161: 691-698. DOI: 10.1016/j.ecoenv.2018.06.052

Castro-González MI, and Méndez-Armenta M. Heavy metals: Implications associated to fish consumption. Environ Toxicol Pharmacol. 2008; 26(3): 263-271. DOI: 10.1016/j.etap.2008.06.001

Apostoli P, and Catalani S. Metal ions affecting reproduction and development. Met Ions Life Sci. 2011; 8: 263-303. Available at: https://pubmed.ncbi.nlm.nih.gov/21473384/