The Major Histocompatibility Complex Region and Diversity of the Local Chicken Populations In Niger

Main Article Content

Moussa Hassan Ousseini
Machuka Eunice
Martina Kyallo
Keambou Tiambo Chistian
Jean-Baka Domelevo Entfellner
Roger Pelle

Abstract

Introduction: The major histocompatibility complex (MHC) of chicken is highly polymorphic, and it is linked to several disease resistance or susceptibility traits. Therefore, the current study aimed to analyze the genetic diversity in the MHC region of Nigerien local chicken (Dourgou, Goggori, Kolonto, Tchagara, Gouzou-gouzou, and Popular) using a high polymorphic microsatellite marker named LEI0258 to determine the diversity of chickens kept at the four agroecological zones in Niger.


Materials and methods: A total of 601 chickens from six local Nigerien chickens were sampled. By capillary electrophoresis using LEI0258 marker, 403 samples with different fragment sizes were randomly chosen and sequenced.


Results: The findings indicated 80 different alleles ranging in size from 181 to 474 bp. A total of 22 new alleles and 39 private alleles (that existed in only one breed) were detected. The alleles 309, 295, and 193 were the most predominant in the Nigerien local chicken population. Nine polymorphisms were observed along the LEI0258 sequence, including three in the upstream (one indel and two Single Nucleotide Polymorphism [SNP]), one in the repeat region at the last R12 (SNP), and five in the downstream (two indels and three SNPs).


Conclusion: The chickens are not clustering according to their agroecological zone of origin. They are randomly distributed across the four investigated agroecological zones. The information found in this study is invaluable in breeding and conservation programs associated with several disease resistance or susceptibility traits.

Article Details

How to Cite
Moussa Hassan, O., Machuka , E., Martina , K., Keambou Tiambo , C., Domelevo Entfellner, J.-B., & Pelle, R. (2023). The Major Histocompatibility Complex Region and Diversity of the Local Chicken Populations In Niger. Journal of World’s Poultry Science, 2(4), 47–54. https://doi.org/10.58803/jwps.v2i4.18
Section
Original Articles

References

Gärke C, Ytournel F, Bed'hom B, Gut I, Lathrop M, Weigend S, et al. Comparison of SNPs and microsatellites for assessing the genetic structure of chicken populations. Anim Genet. 2012; 43(4): 419-428. DOI: 10.1111/j.1365-2052.2011.02284.x

Twito T, Weigend S, Blum S, Granevitze Z, Feldman MW, Perl-Treves R, et al. Biodiversity of 20 chicken breeds assessed by SNPs located in gene regions. Cytogenet Genome Res. 2007; 117(1-4): 319-326. DOI: 10.1159/000103194

Mahammi FZ, Gaouar SBS, Tabet-Aoul N, Tixier-Boichard M, and Saïdi-Mehtar N. Caractéristiques morpho-biométriques et systèmes d'élevage des poules locales en Algérie occidentale (Oranie) [Morpho-biometric characteristics and breeding systems of local chickens in western Algeria (Oranie). Cah Agric. 2014; 23(6): 382-392. DOI: 10.1684/agr.2014.0722

Loukou NE. Caractérisation Phénotypique et moléculaire des poulets locaux (Gallus gallus domesticus Linne,1758) des deux zones agro-écologiques de la cote d’Ivoire [Phenotypic and molecular characterization of local chickens (Gallus gallus domesticus Linne, 1758) from the two agro-ecological zones of the Ivory Coast]. PhD Thesis. 2013.

Berthouly C, Bed'Hom B, Tixier-Boichard M, Chen CF, Lee YP, Laloë D, et al. Using molecular markers and multivariate methods to study the genetic diversity of local European and Asian chicken breeds.

Anim Genet. 2008; 39(2): 121-129. DOI: 10.1111/j.1365-2052.2008.01703.x

Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, et al. Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol. 2006; 38(1): 12-19. DOI: 10.1016/j.ympev.2005.09.014

Esmailnejad A, Nikbakht Brujeni G, and Badavam M. LEI0258 microsatellite variability and its association with humoral and cell mediated immune responses in broiler chickens. Mol Immunol. 2017; 90: 22-26. DOI: 10.1016/j.molimm.2017.06.027

Parmentier HK, Baelmans R, Savelkoul HF, Dorny P, Demey F, and Berkvens D. Serum haemolytic complement activities in 11 different MHC (B) typed chicken lines. Vet Immunol Immunopathol. 2004; 100(1-2): 25-32. DOI: 10.1016/j.vetimm.2004.02.009

Juul-Madsen HR, Nielsen OL, Krogh-Maibom T, Røntved CM, Dalgaard TS, Bumstead N, et al. Major histocompatibility complex-linked immune response of young chickens vaccinated with an attenuated live infectious bursal disease virus vaccine followed by an infection. Poult Sci. 2002; 81(5): 649-656. DOI: 10.1093/ps/81.5.649

Miller MM, and Taylor Jr RL. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci. 2016; 95(2): 375-392. DOI: 10.3382/ps/pev379

Mpenda FN, Keambou CT, Kyallo M, Pelle R, Lyantagaye SL, and Buza J. Polymorphisms of the chicken Mx gene promoter and association with chicken embryos’ susceptibility to virulent Newcastle disease virus challenge. Biomed Res Int. 2019; 2019: 1486072. DOI: 10.1155/2019/1486072

Mpenda FN, Tiambo CK, kyallo M, Juma J, Pelle R, and Lyantagaye SL. Association of LEI0258 marker alleles and susceptibility to virulent Newcastle disease virus infection in Kuroiler, Sasso, and Local Tanzanian chicken embryos. J Pathog, 202; 2020: 5187578. DOI: 10.1155/2020/5187578

Mpenda FN, Schilling MA, Campbell Z, Mngumi EB, and Buza J. The genetic diversity of local African chickens: A potential for selection of chickens resistant to viral infections. Poultry Science Association Inc J Appl Poult Res. 2018; 28(1): 1-12. DOI: 10.3382/japr/pfy063

Bacon LD. Influence of the major histocompatibility complex on disease resistance and productivity. Poult Sci. 1987; 66(5): 802-811. DOI: 10.3382/ps.0660802

Lamont SJ. The chicken major histocompatibility complex in disease resistance and poultry breeding. J Dairy Sci. 1989; 72(5): 1328-1333. DOI: 10.3168/jds.S0022-0302(89)79240-7

Lwelamira J, Kifaro GC, Gwakisa PS, and M. Msoffe PL. 2008; Association of LEI0258 microsatellite alleles with antibody response against Newcastle disease virus vaccine and body weight in two Tanzania chicken ecotypes. Afr J Biotechnol. 7(6): 714-720. Available at: https://www.ajol.info/index.php/ajb/article/view/58502

Lamont SJ, Bolin C, and Cheville N. Genetic resistance to fowl cholera is linked to the major histocompatibility complex. Immunogenetics. 1987; 25(5): 284-289. DOI: 10.1007/BF00404420

McConnell SKJ, Dawson DA, Wardle A, and Burke T. The isolation and mapping of 19 tetranucleotide microsatellite markers in the chicken. Anim Genet. 1999; 30(3): 183-189. DOI: 10.1046/j.1365-2052.1999.00454.x

Fulton JE, Juul-Madsen HR, Ashwell CM, McCarron AM, Arthur JA, O’Sullivan NP, et al. Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics. 2006; 58: 407-421. DOI: 10.1007/s00251-006-0119-0

Chazara O, Juul-Madsen HR, Chang CS, Tixier-Boichard M, and Bed’hom B. Correlation in chicken between the marker LEI0258 alleles and Major Histocompatibility Complex sequences. BMC Proc. 2011; 5(Suppl 4): S29. DOI: 10.1186/1753-6561-5-S4-S29

Chazara O, Chang CS, Bruneau N, Benabdeljelil K, Fotsa JC, Kayang BB, et al. Diversity and evolution of the highly polymorphic tandem repeat LEI0258 in the chicken MHC-B region. Immunogenetics. 2013; 65(6): 447-459. DOI: 10.1007/s00251-013-0697-6

Han B, Lian L, Qu L, Zheng J, and Yang N. Abundant polymorphisms at the microsatellite locus LEI0258 in indigenous chickens. Poult Sci. 2013; 92(12): 3113–3119. DOI: 10.3382/ps.2013-03416

Izadi F, Ritland C, and Cheng KM. Genetic diversity of the major histocompatibility complex region in commercial and non-commercial chicken flocks using the LEI0258 microsatellite marker. Poult Sci. 2011; 90(12): 2711-2717. DOI: 10.3382/ps.2011-01721

Mwambene PL, Kyallo M, Machuka E, Githae D, and Pelle R. Genetic diversity of 10 indigenous chicken ecotypes from Southern Highlands of Tanzania based on Major Histocompatibility Complex-linked microsatellite LEI0258 marker typing. Poult Sci. 2019; 98(7): 2734-2746. DOI: 10.3382/ps/pez076

Bader SR, Kothlow S, Trapp S, Schwarz SC, Philipp HC, Weigend S, et al. Acute paretic syndrome in juvenile White Leghorn chickens resembles late stages of acute inflammatory demyelinating polyneuropathies in humans. J Neuroinflammation. 2010; 7: 7. DOI: 10.1186/1742-2094-7-7

Petersen A, Chadfield MS, Christensen JP, Christensen H, and Bisgaard M. Characterization of small-colony variants of Enterococcus faecalis isolated from chickens with amyloid arthropathy. J Clin Microbiol. 2008; 46(8): 2686-2691. DOI: 10.1128/JCM.00343-08

Alders RG, Dumas SE, Rukambile E, Magoke G, Maulaga W, Jong J, et al. Family poultry: Multiple roles, systems, challenges, and options for sustainable contributions to household nutrition security through a planetary health lens. Matern Child Nutr. 2018; 14(S 3): e12668. DOI: 10.1111/mcn.12668

Ousseini MH, Salissou I, Karmadini HM, and Yacoubou B. Indigenous chicken Kolonto and food security in Gaya. World J Biol Pharm Health Sci. 2021; 6(2): 14-22. DOI: 10.30574/wjbphs.2021.6.2.0044

Amadou Moussa B, Idi A, and Benabdeljelil K. Aviculture familiale rurale au Niger: Alimentation et performances zootechniques. Fam Poult Comm. 2010; 19(1): 3-10. Available at: https://www.fao.org/3/ aq613t/aq613t.pdf

Assoumane I, and Ousseini GI. Revue du secteur avicole Niger. Niger: FAO; 2009. p. 1-69. Available at: https://duddal.org/s/bibnum-promap/item/8852#?c=0&m=0&s=0&cv=0

République du Niger. Recensement Général de l’Agriculture et du Cheptel 2005-2007- Analyse des résultats des enquêtes sur les marchés à bétail et le cheptel aviaire [General census of agriculture and livestock 2005–2007 - Analysis of the results of surveys on livestock markets and poultry livestock]. 2008. Projet GCP/NER/041/EC, MDA/MRA. p. 1-85. Available at: https://duddal.org/s/bibnum-promap/item/7823

Hassan OM, Tiambo CK, Issa S, Hima K, Adamou MLI, and Bakasso Y. Morpho-biometric characterization of local chicken population in Niger. GSC Biol Pharm Sci. 2020; 13(2): 211-224. DOI: 10.30574/gscbps.2020.13.2.0369

Clementino CS, Barbosa FJV, Carvalho AMF, Costa-Filho RAA, Silva GR, Campelo EG, et al. Microsatellite DNA Loci for population studies in Brazilian Chicken Ecotypes. Int J Poult Sci. 2010; 9: 1100-1106. DOI: 10.3923/ijps.2010.1100.1106

Applied Biosystems USA. GeneMapper Software version 4.1. Installation and administration guide. Life Technologies Corporation, Part Number 4403614 Rev. A 04/2009. 2009. p. 1-263. Available at: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_070157.pdf

Macrogen Europe. Meibergdreef 57 1105 BA. Amsterdam, The Netherlands. Available at: https://order.macrogen-europe.com/#

Peakall R, and Smouse PE. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006; 6(1): 288-295. DOI: 10.1111/j.1471-8286.2005.01155.x

Raymond M, and Rousset F. An exact test for population differentiation. Evolution. 1995; 49: 1280-1283. DOI: 10.2307/2410454

Nei M, Tajima F, and Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol. 1983; 19(2): 153-170. DOI: 10.1007/BF02300753

Liu K, and Muse SV. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics. 2005; 21(9): 2128-2129. DOI: 10.1093/bioinformatics/bti282

Lima-Rosa CAV, Wageck Canal C, Fallavena PRV, de Freitas LB, and Salzano FM. LEI0258 microsatellite variability and its relationship to B-F haplotypes in Brazilian (blue-egg Caipira) chickens.

Genet Mol Biol. 2005; 28(3): 386-389. DOI: 10.1590/S1415-47572005000300008

Nikbakht G, Esmailnejad A, and Barjesteh N. LEI0258 microsatellite variability in Khorasan, Marandi, and Arian chickens. Biochem Genet. 2013; 51(5-6): 341-349. DOI: 10.1007/s10528-013-9567-z

Schou TW, Permin A, Juul-Madsen HR, Sørensen P, Labouriau R, Nguyên TL, et al. Gastrointestinal helminths in indigenous and exotic chickens in Vietnam: association of the intensity of infection with the Major Histocompatibility Complex. Parasitology. 2007; 134(4): 561-573. DOI: 10.1017/S0031182006002046

Lwelamira J, Kifaro GC, and Gwakisa PS. Genetic parameters for body weights, egg traits and antibody response against Newcastle disease virus (NDV) vaccine among two Tanzania chicken ecotypes. Trop Anim Health Prod. 2009; 41(1): 51-59. DOI: 10.1007/s11250-008-9153-2

Kapczynski DR, Afonso CL, and Miller PJ. Immune responses of poultry to Newcastle disease virus. Dev Comp Immunol. 2013; 41(3): 447-453. DOI: 10.1016/j.dci.2013.04.012

Hunt HD, Jadhao S, and Swayne DE. Major histocompatibility complex and background genes in chickens influence susceptibility to high pathogenicity avian influenza virus. Avian Dis. 2010; 54(S1): 572-575. DOI: 10.1637/8888-042409-ResNote.1

Briles WE, Stone HA, and Cole RK. Marek’s disease: Effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science. 1977; 195(4274): 193-195. DOI: 10.1126/science.831269

Bacon LD, Hunt HD, and Cheng HH. Genetic resistance to Marek’s disease. In: Hirai K, ed. Marek’s disease. Current Topics in microbiology and immunology. Berlin, Heidelberg: Springer; 2001; p. 121-141. DOI: 10.1007/978-3-642-56863-3_5

Lyimo CM, Weigend A, Jansen-Tapken U, Msoffe PL, Simianer H, and Weigend S. Assessing the genetic diversity of five Tanzanian chicken ecotypes using molecular tools. S Afr J Anim Sci. 2013; 43(4): 499-510. DOI: 10.4314/sajas.v43i4.7

Moussaa HO, Keambouc TC, Himaa K, Issab S, Motsa’ad SJ, and Bakassoa Y. Indigenous chicken production in Niger. Vet Anim Sci. 2019; 7: 100040. DOI: 10.1016/j.vas.2018.11.001

Most read articles by the same author(s)