The Role of Metallic Nanoparticles in the Prevention and Treatment of Parasitic Diseases in Poultry

Main Article Content

Fatemeh Heshmati
Shimen Gevargiz Sangar
Amirmehdi Amoozadehsamakoosh
Elham Azadi
Nima Komeili


The development of nanotechnology for the treatment of parasitic diseases is still in its infancy. However, it is expected that this new field can provide a solution to parasitic diseases and compensate for the lack of vaccines to prevent them. It can also provide new treatment options for parasitic diseases resistant to current treatments. Nanomaterials have been developed for antibacterial and anticancer therapies. However, it is important to determine their antiparasitic potential due to the wide variety of their physicochemical properties. When designing metallic nanoparticles (MeNPs) and specialized nanosystems like MeNPs encapsulated within a drug shell, it is essential to consider several key physicochemical properties. Shape, size, surface charge, and type of surfactant control are some of these physicochemical properties. In addition to interacting with parasite cells’ target molecules, shell molecules are also important. By developing antiparasitic drugs using nanotechnology and nanomaterials for diagnostics, new and effective methods of treatment and diagnostic tools for poultry diseases are expected to be available in the future to enhance poultry disease prevention and reduce morbidity and mortality rates.

Article Details

How to Cite
Heshmati, F., Gevargiz Sangar, S., Amoozadehsamakoosh, A., Azadi, E., & Komeili, N. (2023). The Role of Metallic Nanoparticles in the Prevention and Treatment of Parasitic Diseases in Poultry . Journal of World’s Poultry Science, 2(3), 13–19.
Review Article


Merino L, Procura F, Trejo FM, Bueno DJ, and Golowczyc MA. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res Int. 2019; 119: 530-40. DOI:

Ashrafudoulla M, Na KW, Byun KH, Kim DH, Yoon JW, Mizan MFR, et al. Isolation and characterization of Salmonella spp. from food and food contact surfaces in a chicken processing factory. Poult Sci. 2021; 100(8): 101234. DOI:

Mottet A, and Tempio G. Global poultry production: Current state and future outlook and challenges. Worlds Poult Sci J. 2019; 73(2): 245-56. DOI:

Mirzaei A, Razavi S, Babazadeh D, Laven R, and Saeed M. Roles of probiotics in farm animals: A review. Farm Anim Health Nutr. 2022; 1(1): 17-25. DOI:

Ghaniei A, Ghafouri SA, Sadr S, and Hassanbeigi N. Investigating the preventive effect of herbal medicine (Allium sativum, Artemisia annua, and Quercus infectoria) against coccidiosis in broiler chickens. J World Poult Res. 2023; 13(1): 96-102. DOI:

Ghafouri SA, Ghaniei A, Tamannaei AET, Sadr S, Charbgoo A, Ghiassi S, et al. Evaluation of therapeutic effects of an herbal mixture (Echinacea purpurea and Glycyrrhiza glabra) for treatment of clinical coccidiosis in broilers. Vet Med Sci. 2023; 9(2):829-36. DOI:

Dawood MAO, Basuini MFE, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MKA, et al. Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: A review. Antioxidants. 2021; 10(9): 1364. DOI:

Patra A, and Lalhriatpuii M. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding-A review. Biol Trace Elem Res. 2020; 197(1): 233-53. DOI:

Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, et al. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q. 2022; 42(1): 68-94. DOI:

Mohd Yusof H, Mohamad R, Zaidan UH, and Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J Anim Sci Biotechnol. 2019; 10: 57. DOI:

Bąkowski M, Kiczorowska B, Samolińska W, Klebaniuk R, and Lipiec A. Silver and zinc nanoparticles in animal nutrition–A review. Ann Anim Sci. 2018; 18(4): 879-98. DOI:

Ouyang Z, Ren P, Huang L, Wei T, Yang C, Kong X, et al. Hydrothermal synthesis of a new porous zinc oxide and its antimicrobial evaluation in weanling piglets. Livest Sci. 2021; 248: 104499. DOI:

Nabi F, Arain MA, Hassan F, Umar M, Rajput N, Alagawany M, et al. Nutraceutical role of selenium nanoparticles in poultry nutrition: A review. Worlds Poult Sci J. 2020; 76(3): 459-471. DOI:

Morsy EA, Hussien AM, Ibrahim MA, Farroh KY, and Hassanen EI. Cytotoxicity and genotoxicity of copper oxide nanoparticles in chickens. Biol Trace Elem Res. 2021; 199: 4731-4745. DOI:

Kumar IB, and Bhattacharya J. Assessment of the role of silver nanoparticles in reducing poultry mortality, risk and economic benefits. Appl Nanosci. 2019; 9: 1293-1307 . DOI:

Sheiha AM, Abdelnour SA, Abd El-Hack ME, Khafaga AF, Metwally KA, Ajarem JS, et al. Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals. 2020; 10(3): 430. DOI:

Sawosz E, Binek M, Grodzik M, Zielińska M, Sysa P, Szmidt M, et al. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr. 2007; 61(6): 444-451. DOI:

Hidayat C, Sumiati S, Jayanegara A, and Wina E. Supplementation of dietary nano Zn-phytogenic on performance, antioxidant activity, and population of intestinal pathogenic bacteria in broiler chickens. Trop Anim Sci J. 2021; 44(1): 90-9. DOI:

Hikal WM, Bratovcic A, Baeshen RS, Tkachenko KG, and Said-Al Ahl HA. Nanobiotechnology for the detection and control of waterborne parasites. Open J Ecol. 2021; 11(3): 203-223. DOI:

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13(10): 2638-2650. DOI:

Shah M, Fawcett D, Sharma S, Tripathy SK, and Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015; 8(11): 7278-7308. DOI:

Firdhouse MJ, and Lalitha P. Biosynthesis of silver nanoparticles and its applications. J Nanotechnol. 2015; 2015: 829526. DOI:

Faraday M. the Bakerian lecture. Experimental relations of gold (and other metals) to light. Lond Edinb Dublin Philos Mag J Sci. 1857; 14(95): 401-417. DOI:

Faraday M. The bakerian lecture. Lond Edinb Dublin Philos Mag J Sci. 1857; 147: 145-181. DOI:

Qasim M, Lim DJ, Park H, and Na D. Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol. 2014; 14(10): 7374-7387. DOI:

Sadr S, Lotfalizadeh N, Ghafouri SA, Delrobaei M, Komeili N, and Hajjafari A. Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet Med Sci. 2023. DOI:

Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, and Mahmoudvand H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol Control. 2020; 10: e00156. DOI:

Bajwa HUR, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, et al. Nanoparticles: Synthesis and Their Role as Potential Drug Candidates for the Treatment of Parasitic Diseases. Life. 2022; 12(5): 750. DOI:

Pandey RP, Mukherjee R, Priyadarshini A, Gupta A, Vibhuti A, Leal E, et al. Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomed Pharmacother. 2021; 141: 111943. DOI:

Grillo R, Mattos BD, Antunes DR, Forini MM, Monikh FA, Rojas OJ. Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today. 2021; 37: 101078. DOI:

Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity, and

safety issues. J Pharm Sci. 2014; 103(7): 1931-1944. DOI:

Krol G, Fortunka K, Majchrzak M, Piktel E, Paprocka P, Mankowska A, et al. Metallic nanoparticles and core-shell nanosystems in the treatment, diagnosis, and prevention of parasitic diseases. Pathogens. 2023; 12(6): 838. DOI:

Albanese A, Tang PS, and Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012; 14: 1-16. DOI:

Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, et al. Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials. 2019; 9(10): 1365. DOI:

Baek M, Kim MK, Cho HJ, Lee JA, Yu J, Chung HE, et al. Factors influencing the cytotoxicity of zinc oxide nanoparticles: Particle size and surface charge. J Phys Conf Ser. 2011; 2011: 304. DOI:

Shannahan JH, Lai X, Ke PC, Podila R, Brown JM, and Witzmann FA. Silver nanoparticle protein corona composition in cell culture media. PLoS One. 2013; 8(9): e74001. DOI:

Mikhailova EO. Silver nanoparticles: Mechanism of action and probable bio-application. J Funct Biomater. 2020; 11(4): 84. DOI:

Cao C, Chen F, Garvey CJ, and Stenzel MH. Drug-directed morphology changes in polymerization-induced Self-assembly (PISA) influence the biological behavior of nanoparticles. ACS Appl Mater Interfaces. 2020; 12(27): 30221-30233. DOI:

Pearce AK, Wilks TR, Arno MC, and O’Reilly RK. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem. 2021; 5(1): 21-45. DOI:

Verma A, and Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010; 6(1): 12-21. DOI:

Liu J, Liu Z, Pang Y, and Zhou H. The interaction between nanoparticles and immune system: Application in the treatment of inflammatory diseases. J Nanobiotechnol. 2022; 20(1): 127. DOI:

Dey AK, Gonon A, Pécheur E-I, Pezet M, Villiers C, Marche PN. Impact of gold nanoparticles on the functions of macrophages and dendritic cells. Cells. 2021; 10(1): 96. DOI:

Medzhitov R. Recognition of microorganisms and activation of

the immune response. Nature. 2007; 449: 819-826. DOI:

Zhu M, Tian X, Song X, Li Y, Tian Y, Zhao Y, et al. Nanoparticle‐induced exosomes target antigen‐presenting cells to initiate Th1‐type immune activation. Small. 2012; 8(18): 2841-2818. DOI:

Khan M, Khan AU, Bogdanchikova N, and Garibo D. Antibacterial and antifungal studies of biosynthesized silver nanoparticles against plant parasitic nematode meloidogyne incognita, plant pathogens ralstonia solanacearum and fusarium oxysporum. Molecules. 2021; 26(9): 2462. DOI:

Strużyńska L, and Skalska J. Mechanisms underlying neurotoxicity of silver nanoparticles. Adv Exp Med Biol. 2018; 1048: 227-250. DOI:

Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, and Pae HO. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways?. J Signal Transduct. 2011; 2011: 792639. DOI:

Cameron P, Gaiser BK, Bhandari B, Bartley PM, Katzer F, and Bridle H. Silver nanoparticles decrease the viability of cryptosporidium parvum oocysts. Appl Environ Microbiol. 2016; 82(2): 431-437. DOI:

Shankar S, and Rhim JW. Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater Lett. 2014; 132: 307-311. DOI:

Konstantinovsky D, Perets EA, Santiago T, Velarde L, Hammes-Schiffer S, and Yan EC. Detecting the first hydration shell structure around biomolecules at interfaces. ACS Cen Sci. 2022; 8(10): 1404-1414. DOI:

Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol. 2007; 292(1): R18-R36. DOI:

Albalawi AE, Abdel-Shafy S, Khudair Khalaf A, Alanazi AD, Baharvand P, Ebrahimi K, et al. Therapeutic potential of green synthesized copper nanoparticles alone or combined with meglumine antimoniate (Glucantime®) in Cutaneous leishmaniasis. Nanomaterials. 2021; 11(4): 891. DOI:

Huang Z, Zhang X, Zhu Q, Cao F, Liu W, Shi P, et al. Effect of berberine on copper and zinc levels in chickens infected with Eimeria

tenella. Mol Biochem Parasitol. 2022; 249: 111478. DOI:

Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, et al. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q. 2022; 42(1): 68-94. DOI:

Islam T, Rahaman MM, Mia MN, Ara I, Islam MT, Alam Riaz T, et al. Therapeutic Perspectives of Metal Nanoformulations. Drugs Drug Candidates. 2023; 2(2): 232-278. DOI:

Lang C, Mission EG, Ahmad Fuaad AAH, and Shaalan M. Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability - A review. J Clean Prod. 2021; 293: 126063. DOI:

Sadr S, Ghafouri SA, Ghaniei A, Jami Moharreri D, Zeinali M, Qaemifar N, et al. Treatment of avian trichomoniasis by tannin-based herbal mixture (Artemisia Annua, Quercus infectoria, and Allium

Sativum). J World’s Poult Sci. 2022; 1(2): 32-39. DOI:

Soleimani Lashkenari M, Nikpay A, Soltani M, and Gerayeli A. In vitro antiprotozoal activity of poly(rhodanine)-coated zinc oxide nanoparticles against Trichomonas gallinae. J Dispers Sci Technol. 2019; 41(4): 495-502. DOI:

Abebe E, and Gugsa G. A review on poultry coccidiosis. Abyssinia

J Sci Technol. 2018; 3(1): 1-12. Available at:

Anah SA, Anah SA, and Al-Khalidy KA. Antiparasitic activity of zinc oxide nanoparticles against Eimeria tenella in broilers experimentally infect. Korean J Vet Res. 2022; 12(1): 1-6. Available at:

Mikhailova EO. Gold nanoparticles: biosynthesis and potential of biomedical application. J Funct Biomater. 2021; 12(4): 70. DOI:

Sengupta A, Azharuddin M, Al-Otaibi N, and Hinkula J. Efficacy and immune response elicited by gold nanoparticle- based nanovaccines against infectious diseases. Vaccines. 2022; 10(4): 505. DOI:

Benelli G. Gold nanoparticles–against parasites and insect vectors. Acta Tropica. 2018; 178: 73-80. DOI:

Joshi G, Quadir SS, and Yadav KS. Road map to the treatment of neglected tropical diseases: Nanocarriers interventions. J Control Release. 2021; 339: 51-74. DOI:

Parween S, Gupta PK, and Chauhan VS. Induction of humoral immune response against PfMSP-119 and PvMSP-119 using gold nanoparticles along with alum. Vaccine. 2011; 29(13): 2451-2460. DOI:

Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert review of vaccines. 2020; 19(5): 465-477. DOI:

Aruguete DM, Kim B, Hochella MF, Ma Y, Cheng Y, Hoegh A, et al. Antimicrobial nanotechnology: Its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Process Impacts. 2013; 15(1): 93-102. DOI:

Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, and Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog. 2018; 123: 505-526. DOI:

Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, et al. Antibiotic resistance in aquaculture and aquatic organisms: A review of current nanotechnology applications for sustainable management. Environ Sci Pollut Res Int. 2022; 29(46): 69241-69274. DOI:

Ranghar S, Sirohi P, Verma P, and Agarwal V. Nanoparticle-based drug delivery systems: Promising approaches against infections. Braz Arch Biol Technol. 2014; 57(2): 209-222. DOI:

Ge H, Wang Y, and Zhao X. Research on the drug resistance mechanism of foodborne pathogens. Microb Pathog. 2022; 162: 105306. DOI:

Ojemaye MO, Adefisoye MA, Okoh AI. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds:

A review. J Environ Manage. 2020; 275: 111234. DOI:

Xu L, Wang YY, Huang J, Chen CY, Wang ZX, and Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020; 10(20): 8996-9031. DOI:

Lakshmi S, Avti PK, and Hegde G. Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review.

Nano-Struct Nano-Objects. 2018; 16: 306-321. DOI:

Gujjari L, Kalani H, Pindiprolu SK, Arakareddy BP, and Yadagiri G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol Control. 2022; 17: e00244. DOI:

Waheed S, Li Z, Zhang F, Chiarini A, Armato U, and Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnol. 2022; 20: 395. DOI:

Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, and Namdee K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Sci Rep. 2019; 9: 8278. DOI:

Ningning M, Chao M, Chuanyan L, Ting W, Yongjun T, Hongyin W, et al. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J Nanosci Nanotechnol. 2013; 13(10): 6485-6498. DOI:

Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, and Aldughaim MS. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers. 2023; 15(7): 1596. DOI: