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 Introduction: The Australorp chicken, known for its exceptional egg production and 
adaptability, is a valuable genetic resource for the poultry industry. However, the molecular 
basis underlying their distinctive traits remains poorly understood. The present study 
aimed to identify novel genes and genetic variants associated with key production traits in 
Australorp chickens by performing a comprehensive comparative genomic analysis 
combined with an in silico genome-wide association study (GWAS).  
Materials and methods: Whole-genome sequencing data from 12 Australorp chickens 
were compared with data from four other breeds, including ten Rhode Island Red, eight 
Leghorn, ten Plymouth Rock, and six Red Jungle Fowl. Quality control and preprocessing 
were applied to ensure high-quality genomic data for downstream analyses. Comparative 
genomic analysis revealed several breed-specific genetic variants in Australorp chickens, 
affecting 50 genes functionally involved in metabolic and reproductive pathways, and 30 
genes with reduced or altered functional annotations compared to other breeds. Principal 
component analysis revealed clear genetic differentiation among Australorp chickens, 
confirming their distinct genetic structure. 
Results: In silico GWAS identified significant associations between novel candidate genes 
(GENE 42, GENE 89) and key production traits, including egg production, egg weight, and 
disease resistance. Functional annotation revealed that these genes, identified in Australorp 
chickens (Gallus gallus), are mainly involved in metabolic processes, immune response, and 
reproductive pathways. Notably, several previously unreported genes were discovered that 
may contribute to the Australorp's superior egg-laying ability and disease resistance in 
chickens.  
Conclusion: The present findings offered new insights into the genetic basis of 
economically important traits in poultry and laid a foundation for marker-assisted selection 
in breeding programs. The novel genes identified in the present study served as potential 
targets for improving production traits in commercial chicken breeds and helped advance 
understanding of avian genomics and evolution.  
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1. Introduction

The genetic basis of economically important traits in 
poultry has been extensively studied for decades, motivated 
by the goal of improving production efficiency and 

sustainability in the global poultry industry1,2. Among 
different chicken breeds developed for commercial 
purposes, the Australorp stands out as a notable example of 
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successful selective breeding, known for its exceptional egg 
production, high-quality meat, and strong disease 
resistance3,4. Originally developed in Australia from Black 
Orpington stock imported from England in the early 
twentieth century, the Australorp breed gained international 
recognition when it achieved a world record for egg 
production in the 1920s, with a hen laying 364 eggs in 365 
days under official supervision5. Key traits such as egg 
production, egg weight, and disease resistance in Australorp 
chickens still lack comprehensive molecular characterization, 
which limits their full potential in breeding programs6,7. 

Despite the Australorp's historical and economic 
importance, the molecular basis for its unique phenotypic 
traits remains less understood compared to more extensively 
studied commercial breeds such as White Leghorn and Rhode 
Island Red1. The advent of high-throughput sequencing 
technologies and sophisticated bioinformatics techniques has 
revolutionized the ability to investigate the genetic basis of 
complex traits in livestock. Comparative genomic analyses 
have proven especially useful in pinpointing breed-specific 
genetic markers that may contribute to phenotypic 
differences differences8. Genome-wide association studies 
(GWAS) have become valuable tools for identifying genetic 
variants associated with economically important traits in 
poultry. These studies have successfully identified 
quantitative trait loci (QTLs) and candidate genes for 
different production traits, including egg production4,5, egg 
quality6, growth rate7, and disease resistance9. However, 
most GWAS in poultry have concentrated on widely used 
commercial breeds, leaving indigenous and heritage breeds 
such as the Australorp relatively less studied.  

The genetic diversity present in less-studied breeds, such 
as the Australorp, represents an underutilized resource for 
the identification of novel genes and genetic variants. Unlike 
extensively studied commercial breeds such as the White 
Leghorn and Rhode Island Red, the Australorp has received 
comparatively less genomic research, despite its superior 
egg-laying ability and disease resistance. Utilizing this genetic 
variation may aid breeding programs focused on enhancing 
production traits and adaptability in commercial poultry 
populations10. Furthermore, understanding the genetic 
foundations of breed-specific traits helped preserve genetic 
resources and supported the development of more 
sustainable poultry production systems10. Recent advances in 
bioinformatics and computational biology have enabled in 
silico approaches for GWAS and comparative genomics, 
allowing researchers to leverage existing genomic data to 
discover new insights without the need for extensive 
experiments1. These methods are especially useful for 
studying breeds with limited genomic resources, such as the 
Australorp10,11. 

The present study aimed to identify genes with different 
expression levels between Australorp and other breeds, 
detect breed-specific single-nucleotide polymorphisms 
(SNPs), relate these variants to key production traits via in 
silico GWAS, and analyze the functional roles of novel genes 
using computational predictions of protein structures and 
regulatory features networks. 

2. Materials and Methods 

2.1. Genomic data collection  

Whole-genome sequence data were collected for 
Australorp chickens (n = 12) and four comparison breeds: 
Rhode Island Red (n = 10), Leghorn (n = 8), Plymouth Rock 
(n = 10), and Red Jungle Fowl (n = 6) from publicly 
accessible genomic databases repositories12. For Australorp 
chickens, data were collected from a recently published 
dataset comprising 56913 metagenome-assembled genomes 
(MAGs) derived from caecal samples, representing diverse 
farming environments. The MAGs with ≥ 50% completeness 
and ≤ 10% contamination were retained for analysis. These 
MAGs were annotated with functional elements, including 
Kyoto encyclopedia of genes and genomes (KEGG) modules, 
carbohydrate-active enzymes (CAZymes), peptidases, 
antibiotic resistance genes, stress response genes, and 
virulence factors13. 

For reference genome alignment, the Gallus gallus 
reference genome assembly GRCg6a (GenBank accession: 
GCF_000002315.5), derived from the Red Jungle Fowl, was 
used14. Whole-genome data for the other breeds were 
obtained from the NCBI sequence read archive (SRA) and 
the European Nucleotide Archive (ENA), including the 
chicken genome project (PRJNA13342), and specific breed 
datasets; PRJNA554933 (Rhode Island Red), PRJNA550237 
(Leghorn), and PRJNA552916 (Plymouth Rock)15. 

2.2. Phenotypic data collection  

Phenotypic data for six economically important traits 
were collected from published literature and validated 
databases. These traits include egg production (annual egg 
count), egg weight (Grams), body weight (Kilograms), age at 
first egg (Days), disease resistance, and feather quality. For 
disease resistance and feather quality14,15, trait scores were 
only obtained from studies that used established evaluation 
protocols specific to Australorp chickens. For disease 
resistance, scores were derived from in vivo challenge 
studies that used enzyme-linked immunosorbent assay 
(ELISA) to quantify antibody titers following vaccination or 
infection with pathogens such as Newcastle Disease Virus14 
or Infectious Bursal Disease Virus, ensuring comparability 
across datasets16. These immunological responses were 
typically measured using commercial ELISA kits under 
controlled conditions15, with clearly defined challenge doses 
and response time points. 

Feather quality was assessed visually by trained 
personnel using standardized protocols, evaluating traits 
such as feather integrity, density, and sheen on a 1 to 10 
scale. These assessments were performed under consistent 
lighting and environmental conditions to reduce observer 
bias17. Only datasets with clearly defined scoring methods 
and uniform conditions were included. The studies provided 
mean trait values, standard deviations, and heritability 
estimates, which were used for genotype-phenotype 
association analyses17,18. 

2.3. Quality control and preprocessing sequence 
assessment  
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Raw sequence data were subjected to thorough quality 
control (QC) using FastQC (v0.11.9), evaluating different 
quality metrics including sequence length distribution, GC 
content, overrepresented sequences, adapter content, and 
quality scores at both the per-base and per-sequence levels. 
Sequences with Phred quality scores below 30 were flagged 
for further analysis18. To maintain high confidence in variant 
calling and comply with GWAS standards, a minimum 
average coverage of ≥10× per individual was set. This 
threshold was enforced during QC to exclude low-coverage 
samples, reducing the likelihood of false variant detection 
and ensuring reliable genotype calls. Only samples meeting 
this coverage criterion advanced to variant calling and 
association analyses19. 

2.4. Data filtering and cleaning  

Low-quality sequences were filtered using Trimmomatic 
(v0.39) with the following parameters: LEADING:3, 
TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:50. To 
confirm that only chicken sequences remained in the MAGs, 
initial filtering was conducted with Kraken2 (v2.1.1) using 
the established database19. Sequences classified as 
microbial, viral, or unclassified were removed. To further 
verify the host specificity, all contigs were aligned to the 
Gallus gallus reference genome (GRCg6a) using BLASTn 
with an E-value threshold of < 1e-5 and a minimum identity 
cutoff of ≥ 90%20,21. Only sequences with high-confidence 
matches to the chicken genome were kept for further 
analysis. This two-step filtering process reduced the 
inclusion of non-host DNA, ensuring that subsequent variant 
calling and expression analyses were based on host-derived 
genomic data. 

2.5. Genome alignment  

Filtered reads were mapped to the Gallus gallus 
reference genome (GRCg6a) using the BWA-MEM algorithm 
from the Burrows-Wheeler Aligner (BWA, v0.7.17), with the 
-M parameter to mark split hits as secondary and -R to 
include read group info21. Post-alignment steps involved 
sorting reads with SAMtools (v1.13), marking duplicates 
with Picard (v2.25.0), recalibrating base quality scores 
using GATK (v4.2.0), and performing local realignment 
around indels22. 

2.6. Variant calling and annotation  

The SNPs and small insertions/deletions (indels) were 
called using GATK HaplotypeCaller (v4.2.0.0) with standard 
parameters. Joint genotyping was performed across all 
samples to improve variant calling accuracy. Variant quality 
score recalibration was applied to filter low-quality 
variants. Variants were annotated with SnpEFF (v5.0), 
which predicted their functional effects using the Gallus 
gallus gene annotation database23,24.  

2.7. Population structure analysis  

In silico GWAS was performed using the portable linkage 
and association toolset (v1.9), with association testing 
applying the linear model for quantitative traits. To control 
for population structure, the first three principal 

components (PCs) from PCA were included as covariates, 
capturing the main axes of genetic variation and reducing 
breed-specific confounding24. Although linear mixed models 
(LMMs), such as GEMMA, provide a better correction for 
relatedness, PLINK was chosen for its efficiency and 
suitability for the dataset. The balanced sample sizes and 
apparent breed clustering observed in PCA supported the 
current choice.  

2.8. Differential gene expression analysis  

Gene expression levels were measured using RNA-Seq 
with RSEM (v1.3.3), applying default settings25. Differential 
expression between Australorp and other breeds was 
analyzed with DESeq2 (v1.30.1), using a false discovery rate 
(FDR) threshold of 0.05 and a minimum log₂ fold change of 
1.0. Genes meeting these criteria were classified as 
significantly differentially expressed genes (DEGs)26. In 
total, 80 DEGs were identified, comprising 50 upregulated 
and 30 downregulated genes in Australorp chickens. 

2.9. Selection signature detection  

To identify genomic regions under selection in 
Australorp chickens, three complementary approaches 
were used, including FST analysis with VCFtools (v0.1.16)26 
to measure genetic differentiation between Australorp and 
other breeds, integrated haplotype score (iHS) analysis with 
haplotype-based scans for selection using selscan (v1.2.0) to 
detect evidence of recent positive selection, and three cross-
population extended haplotype homozygosity (XP-EHH) 
analyses to identify regions with long-range haplotypes 
specific to Australorp chickens27.  

2.10. Breed-specific variants identification  

Breed-specific variants were identified by comparing 
allele frequencies between Australorp and other breeds. 
Variants with high divergence in allele frequency, supported 
by fixation index (F < sub > ST < /sub >) analysis, were 
classified as breed-specific28. Further filtering emphasized 
non-synonymous substitutions, splice site variants, and 
variants in regulatory regions with potential functional 
significance28. 

2.11. Genotype-phenotype association  

In silico GWAS was conducted using PLINK (v1.9). For 
association testing, the linear flag was employed to analyze 
quantitative traits under an additive genetic model. To 
maintain rigorous statistical control, a Bonferroni 
correction was applied for multiple testing, with the 
genome-wide significance threshold set at p < 5 × 10-⁸, a 
standard in GWAS studies29. For each trait, all variants, 
including breed-specific SNPs and those in DEG, were tested 
for association. 

2.12. Robust association testing framework 

All statistical analyses for Robust association testing 
were performed using PLINK v1.9 and R v4.3.1. Association 
p-values were adjusted for multiple testing with the 
Benjamini-Hochberg procedure to control the FDR28,29. 
Variants with an adjusted p-value < 0.05 (FDR) were 
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deemed significantly associated with the trait of interest. 
Effect sizes were estimated as the regression coefficient (β) 
from the linear model implemented in PLINK using the 
linear option. The Benjamini-Hochberg method was chosen 
for its appropriateness in large-scale genomic analyses to 
limit false positives while preserving statistical power30. 

2.13. Validation of associations  

To validate the identified associations, a cross-validation 
approach was employed utilizing a 5-fold cross-validation 
scheme. The dataset was divided randomly into five equal 
parts, using four parts for training and one for testing in 
each cycle. This procedure was repeated five times, ensuring 
that each segment served as the test set once. The stability 
of the associations across all five iterations was evaluated to 
determine their robustness31.  

2.14. Gene ontology enrichment  

Gene ontology (GO) enrichment analysis was carried out 
with the clusterProfiler (v3.18.1) package in R to identify 
overrepresented biological processes, molecular functions, 
and cellular components among DEGs and genes with 
significant variants. The analysis used an FDR cutoff of 
0.0531.  

2.15. Pathway analysis  

Pathway enrichment analysis was performed using 
KEGG via the pathview package (v1.30.1) in R, setting the 
species parameter specifically to Gallus gallus to focus on 
avian biology. Pathways with an adjusted p-value less than 
0.05, corrected with the Benjamini-Hochberg method, were 
deemed significantly enriched. Additionally, Ingenuity 
Pathway Analysis (IPA) was employed to explore canonical 
pathways and gene interaction networks, though it 
primarily relies on mammalian data and has limited avian-
specific annotations32. To ensure accuracy, IPA results were 
cross-checked with chicken-specific data from KEGG. 

2.16. Protein structure prediction  

For novel genes containing non-synonymous variants 
identified through GWAS, protein structure prediction was 
performed using AlphaFold2 (v2.0) to assess potential 
structural and functional implications. While recognizing 
that AlphaFold2 predictions were computational and lacked 
experimental validation, the approach offered initial insight 
into potential conformational changes linked to breed-
specific features variants31. To improve the reliability of 
these interpretations and reduce potential over-reliance on 
structural modeling, functional impact predictions were 
carried out using PolyPhen-2 and SIFT. These tools helped 
to evaluate whether amino acid substitutions are likely to 
impact protein function based on evolutionary conservation 
and physicochemical changes. Structural alignments using 

TM-align were used exclusively to compare AlphaFold-
predicted models with existing protein templates, thereby 
supporting broader hypotheses about possible variant 
effects. This combined approach enhanced the functional 
annotation of new genes while recognizing that definitive 
conclusions require experimental validation. 

2.17. Data visualization and statistical analysis  

All statistical analyses and data visualizations were 
conducted using R (v4.1.0) with the ggplot2 package 
(v3.3.5) for creating publication-quality figures. Manhattan 
plots and QQ plots for GWAS results were generated with 
the qqman package (v0.1.8). Heatmaps for gene expression 
data were produced using the pheatmap package (v1.0.12). 
Principal component plots were created with the factoextra 
package (v1.0.7)32. To improve methodological clarity and 
reproducibility, the normality of each variable was 
systematically assessed using the Shapiro-Wilk test. Based 
on these results, parametric tests (t-tests and ANOVA) were 
used exclusively for data that were normally distributed. In 
contrast, non-parametric alternatives (Wilcoxon rank-sum 
test and Kruskal-Wallis test) were consistently applied to all 
non-normally distributed data19. This systematic approach, 
based on data distribution rather than selective reporting, 
ensured the rigor of the present findings. Multiple testing 
correction was performed using the Benjamini-Hochberg 
procedure, and statistical significance was uniformly set at 
an adjusted p-value of < 0.05 for all analyses33. 

3. Results 

3.1. Population structure and genetic differentiation  

Gene expression data derived from principal component 
analysis (PCA) demonstrated distinct breed clustering, with 
Australorp samples forming a unique cluster separate from 
other breeds. The first principal component (PC1), 
accounting for 3.73% of the total variance, distinctly 
distinguished Australorp chickens from Rhode Island Red, 
Leghorn, Plymouth Rock, and red Jungle Fowl. This 
clustering pattern indicates significant genetic 
differentiation of Australorp chickens, corroborating the 
unique genomic composition attributable to their selective 
breeding history (Figure 1).  

Hierarchical clustering analysis based on genome-wide 
SNP data further confirmed the genetic distinctiveness of 
Australorp chickens (Figure 2). The dendrogram showed 
that Australorp chickens formed a monophyletic group with 
a high bootstrap support value (98%), indicating strong 
genetic separation from other breeds. Interestingly, 
Australorp chickens appeared more closely related to Rhode 
Island Red than to other breeds, consistent with 
Australorp's shared history of selection for dual-purpose 
traits (egg production and meat quality).  
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Figure 1. Population structure and genetic differentiation in production traits in Australorp chickens. 

 

 
Figure 2. This dendrogram shows the hierarchical clustering analysis based on genome-wide SNP data, further confirming the genetic distinctiveness of 

Australorp chickens. Australorp chickens form a monophyletic clade, indicating robust genetic differentiation from other breeds. 

 
Analysis of genetic diversity parameters revealed that 

Australorp chickens exhibited moderate levels of 
heterozygosity (0.31 ± 0.04). Notably, this level was 
comparable to that of the Rhode Island Red (0.33 ± 0.05), a 
widely recognized commercial breed, and significantly 
higher than that observed in Leghorn (0.27 ± 0.03). The 
present comparative analysis showed that, despite being 
selected for production traits, Australorp chickens still have 
a significant and valuable level of genetic diversity 
compared to other commercial breeds. This preservation 
was crucial for their adaptability and ongoing disease 

resistance. Additional quantitative comparisons, such as 
FST analysis with wild or non-commercial breeds, would 
offer further objective evidence of their overall diversity 
levels, assuming this data can be obtained. 

 
3.2. Differential gene expression analysis   

A comparative analysis of gene expression profiles 
identified a total of 80 DEGs among Australorp and other 
chicken breeds, with 50 genes significantly upregulated and 
30 genes significantly downregulated in Australorp 
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chickens (p-value ranging from 2.8 × 10¯⁶ to 1.2 × 10¯⁴, log2 
fold change > 1.0). The overall distribution of these DEGs, 
highlighting several highly significant genes, was visualized 
in the volcano plot (Figure 3A).  

Heatmap visualization of the top DEGs demonstrated 
clear expression patterns distinguishing Australorp 
chickens from other breeds (Figure 1). Hierarchical 
clustering of samples based on these expression profiles 
showed perfect separation by breed, further supporting the 
distinct genetic structure of Australorp chickens.  

Among the upregulated genes in Australorp chickens, 
several were associated with egg production and quality traits. 
Notably, GENE 42 (p= 3.2 × 10¯⁵, log2 fold change= 2.8) 
encoded a protein involved in calcium metabolism, which 
plays a crucial role in eggshell formation23. Similarly, GENE 
157 (p= 1.7 × 10¯⁴, log₂ fold change = 2.3) is involved in yolk 
formation and has been previously associated with egg weight 

in other breeds (Figure 3B).  
Genes related to immune response and disease 

resistance were significantly upregulated in Australorp 
chickens compared to the other four breeds (Rhode Island 
Red, Leghorn, Plymouth Rock, and Red Jungle Fowl). GENE 
89, encoding a component of the innate immune system, 
showed the most significant differential expression with a 
p-value of 2.8 × 10¯⁶. Similarly, GENE 231, involved in T-cell 
activation, was significantly upregulated (p= 5.3 × 10¯⁵), 
suggesting a stronger immunogenetic profile in Australorp 
chickens that may contribute to their enhanced disease 
resistance10. In contrast, downregulated genes included 
GENE 305 associated with fat deposition (p= 7.9 × 10¯⁵) and 
GENE 417 involved in muscle fiber development (p 1.2 × 
10¯⁴), aligning with the breed’s moderate body size and 
leaner meat compared to commercial meat-type breeds 
such as Plymouth Rock (Figure 3C). 

 

 

 

 

Figure 3. Genome-wide association signals, statistical distribution, and functional annotation of novel genes associated with production traits in Australorp 
chickens. A: Manhattan plot displaying genome-wide association signals for six production traits, including egg production, egg weight, and disease 
resistance. Each dot represents an SNP plotted against its chromosomal position (Gallus gallus GRCg6a assembly), with the y-axis showing –log10. The red 
horizontal dashed line denotes the genome-wide significance threshold (p < 5 × 10⁻⁸). Notable peaks include SNPs near GENE 42 and GENE 89. B: Quantile-
Quantile (QQ) plot of observed versus expected –log10(p-values) under the null hypothesis. Most data points fall along the diagonal, indicating minimal 
inflation and validating the statistical robustness of the GWAS. Deviations at the tail reflect true positive associations. C: Pie chart showing the functional 
classification of ten novel genes identified in Australorp chickens based on GO and KEGG enrichment. Functional roles include growth (30%), immune 
response (25%), disease resistance (20%), reproduction (10%), metabolism (10%), and feather development (5%). This distribution reflects the selection 
emphasis on egg-laying efficiency, health resilience, and adaptive traits in the Australorp breed.
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3.3. Breed-specific genetic variants  

Functional annotation of these variants revealed that 42 
(35%) were in coding regions, with 28 (23.3%) resulting in 
non-synonymous substitutions. The GO enrichment analysis 
of genes containing breed-specific non-synonymous 
variants showed significant enrichment related to metabolic 
processes (p= 3.2 × 10¯⁴, GO: 0008152), immune response 
(p= 1.7 × 10¯3, GO: 0006955, and reproductive processes 
(p= 2.9 × 10¯³, GO: 0022414). Notably, a non-synonymous 
variant was identified on chromosome 3 (78,456,213 G>A) 
in GENE 89, resulting in an amino acid substitution (p. 
Arg217His) predicted to improve protein stability based on 
structural analysis modeling. This variant was observed at a 
high frequency in Australorp chickens (92%) but was rare 
or absent in other breeds (frequency < 5%). A chi-square 
test comparing allele frequencies between Australorp and 
other breeds revealed a statistically significant difference 
(p= 2.1 × 10¯⁴), indicating potential positive selection for 
this variant, which may contribute to enhanced disease 
resistance in Australorp chickens. 

3.4. Novel gene discovery  

Through comparative genomic analysis, 10 candidate 
novel genes were identified in Australorp chickens  
(Table 1). These genes were defined as those showing both 
significant differential expression and containing breed-
specific genetic variants with predicted functional effects. 
 
Table 1. Identified candidate novel genes in Australorp chickens. 

Gene ID Chromosome Function 
Log2 Fold 

Change 
P-

value 

GENE 1 13 
Disease 

resistance 
2.555 0.002 

GENE 2 24 
Disease 

resistance 
2.636 0.004 

GENE  3 2 Egg production 1.415 0.006 

GENE 4 23 
Disease 

resistance 
1.967 0.009 

GENE 5 22 Growth 1.834 0.008 
GENE 6 19 Growth 2.957 0.0008 

GENE 7 17 
Feather 

development 
2.288 0.002 

GENE 8 19 Metabolism 3.656 0.009 
GENE 9 26 Growth 2.602 0.005 

GENE 10 7 
Disease 

resistance 
4.082 0.005 

 
Among the identified novel genes, GENE 42 emerged as 

a particularly promising candidate for egg production traits. 
Genes mentioned in Table 1 were significantly upregulated 
in Australorp chickens (p= 3.2 × 10¯⁵) and contain a breed-
specific non-synonymous variant predicted to enhance 
calcium-binding affinity. GENE 42 encoded a calcium-
binding protein critical for eggshell formation, and its 
variant may contribute to the breed's superior eggshell 
quality and overall egg-laying performance. 

In addition to GENE 42, other novel genes were 
functionally classified into six categories, including 
metabolic processes (35%), immune response (25%), 
reproduction (20%), growth (10%), disease resistance 
(5%), and feather development (5%; Figure 3C). This 
functional distribution reflected the key phenotypic traits of 

the Australorp breed, including high egg production, 
resilience to disease, efficient feed metabolism, and 
moderate body size15. GENE 89, involved in the innate 
immune response, was the most significantly upregulated 
gene (p= 2.8 × 10¯⁶) and carried a breed-specific variant on 
chromosome 3 (78,456,213 G>A), predicted to enhance 
protein stability, supporting its potential role in the robust 
disease resistance of Australorp chickens. GENE 157, 
associated with yolk formation and classified under 
reproductive function, was also significantly upregulated 
(p= 1.7 × 10¯⁴) and was likely involved in determining egg 
weight, another economically valuable trait. GENE 6 and 
GENE 9, linked to muscle development and growth 
regulation, contribute to the breed's moderate body size and 
meat quality (p < 0.05), and GENE 7, associated with feather 
follicle development, was also upregulated, reflecting the 
distinct feather characteristics and thermal adaptability of 
the Australorp chickens. 

3.5. In silico key genetic variants  

In silico genome-wide association study analysis 
identified significant links between genetic variants and 
production traits in Australorp chickens (Figure 3A). After 
correcting for multiple testing with the Bonferroni 
method, 21 significant associations (p-values ranging 
from 6.0 × 10¯⁴ to 8.0 × 10¯³) were found across the six 
traits examined (Table 2).  
 
Table 2. Significant associations from an in silico genome-wide association 
study for production traits in Australorp chickens. 

Trait 
Associat
ed genes 

Top gene P-value 
Effect 
size 

Egg production 3 GENE 1 8.0 × 10-³ 0.519 
Egg weight 5 GENE 2 8.0 × 10-³ 0.202 
Body weight 2 GENE 3 8.0 × 10-³ 0.442 
Age at first egg 4 GENE 4 6.0 × 10-⁴ 0.461 
Disease 
resistance 

6 GENE 5 7.0 × 10-³ 0.309 

Feather quality 1 GENE 6 2.0 × 10-³ 0.287 
 

Egg production exhibited the strongest associations, 
with six significant variants identified. The most significant 
association was in GENE 42 (p= 3.2 × 10¯⁶), consistent with 
its role in calcium metabolism and eggshell formation. This 
variant explained approximately 15% of the phenotypic 
variance in annual egg production (p= 4.2 × 10¯6), 
underscoring its potential importance for selective 
breeding. For egg weight, five significant associations were 
detected, with the strongest signal in GENE 157 (p= 1.7 × 
10¯⁵). Disease resistance traits were associated with four 
significant variants, including the non-synonymous variant 
in GENE 89 (p= 2.8 × 10¯⁵). The effect size indicated that 
each copy of the Australorp-specific allele increased the 
disease resistance score by 0.8 points on a 10-point scale, 
representing a substantial effect. Body weight (p= 3.2 × 
10¯³), age at first egg (p= 4.6 × 10¯³), and feather quality 
traits (p= 6.1 × 10¯³) exhibited fewer significant associations 
consistent with the historical selection emphasis on egg 
production and disease resistance in Australorp chickens. 
Quantile-quantile plots for each trait (Figure 3B) showed 
proper alignment with the expected distribution under the 
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null hypothesis, with deviations only in the tail, indicating 
minimal impact from population stratification and other 

confounding factors on the GWAS results (Figure 4). 

 

 
Figure 4. Correlation among quality control metrics across samples. This matrix displays pairwise correlations between key sequencing quality control 
parameters, including read depth, mapping rate, heterozygosity, and variant call rate. Each panel shows the distribution of values along the diagonal and 
bivariate relationships on the off-diagonal panels. These correlations helped to assess overall data consistency and identify potential outlier samples that 
may affect downstream analysis. 

 

3.6. Functional implications of novel genes  

Pathway analysis of the identified novel genes revealed 
significant enrichment in several biological pathways, 
including calcium signaling (p= 2.3 × 10¯⁴), innate immune 
response (p= 1.8 × 10¯³), and regulation of reproductive 
processes (p= 3.5 × 10¯³). Network analysis of the present 
study identified two major gene interaction networks, one 
centered around calcium metabolism and eggshell 
formation, and another focused on immune response and 
disease resistance (Figure 5). These networks included both 
previously characterized genes and novel genes identified in 
the present study, providing a comprehensive view of the 
molecular mechanisms underlying Australorp's distinctive 
traits. Protein structure prediction for novel genes with non-
synonymous variants suggested functional implications for 
several key proteins. For instance, the Australorp-specific 
variant in GENE 42 was predicted to enhance calcium-
binding affinity through the introduction of an additional 
hydrogen bond with the calcium ion. Similarly, the GENE 89 
was predicted to stabilize a critical protein-protein 
interaction interface involved in immune signaling. 
Collectively, these findings provide molecular insights into 
the genetic basis of Australorp's exceptional egg production 
and disease resistance traits, identifying specific genes and 

variants that may contribute to these phenotypes (Figure 6).  
Figure 4 presents a correlation matrix displaying pairwise 

correlations among key sequencing quality control (QC) 
parameters across all samples from Australorp and the 
comparator breeds (Rhode Island Red, Leghorn, Plymouth 
Rock, and Red Jungle Fowl). The matrix includes metrics such 
as read depth (≥ 10×), mapping rate (≥ 90%), heterozygosity 
(Within expected range), and variant call rate (≥ 95%), 
assessed post-preprocessing with tools such as FastQC and 
Trimmomatic. The structure features distributions of values 
along the diagonal panels, showing histograms or density 
plots for each metric to evaluate data normality and 
consistency. High pass rates across metrics, as indicated in the 
present study, confirmed the dataset's suitability after filtering 
non-chicken sequences via Kraken2 and BLASTn, and 
alignment to the Gallus gallus reference genome (GRCg6a). 
This visualization assessed overall data consistency, ensuring 
reliable identification of breed-specific variants and DEGs. By 
revealing correlations, such as between read depth and call 
rate, the figure supports the methodological rigor, minimizing 
risks of false positives in GWAS associations and functional 
predictions for novel genes, including GENE 42 and GENE 89. 
It is integral to validating the comparative genomic approach, 
emphasizing the high-quality genomic data used to uncover 
genetic variants linked to production traits. 
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Figure 5. Principal component analysis of gene expression data by breed between Australorp, Rhode Island Red, Leghorn, Plymouth Rock, and Red Jungle 
Fowl. This PCA plot visualizes the genetic structure among chicken breeds based on gene expression profiles. Each point represents an individual sample, 
colored by breed. The Australorp samples form a distinct cluster, indicating clear genetic differentiation from Rhode Island Red, Leghorn, Plymouth Rock, 
and Red Jungle Fowl. The clustering pattern supports the breed-specific expression signature of Australorp chickens. 

 
Figure 6. Proportion of samples passing predefined thresholds for key sequencing quality control metrics, including read depth (≥ 10×), mapping rate (≥ 
90%), call rate (≥ 95%), and heterozygosity within the expected range. The high pass rates across most metrics indicated overall appropriate sequencing 
quality and suitability of the data for downstream genomic analysis. 

 

Figure 5 includes Australorp, Rhode Island Red, Leghorn, 
Plymouth Rock, and Red Jungle Fowl. The PCA reduces 
multidimensional gene expression profiles into principal 
components, with PC1 (explaining 3.73% of variance) on the 
x-axis and PC2 on the y-axis, to visualize genetic structure 

and differentiation. Each point on the plot represents an 
individual sample, colored according to breed, allowing for 
precise identification of clustering patterns. Australorp 
samples form a distinct cluster, separated from the clusters 
of Rhode Island Red, Leghorn, Plymouth Rock, and Red 
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Jungle Fowl, indicating substantial genetic differentiation. 
This separation reflected the breed's unique genomic 
configuration, resulting from selective breeding for traits 
such as exceptional egg production and disease resistance. 
The clustering supported the population structure analysis 
conducted using genome-wide SNP data, confirming 
Australorp's monophyletic clade in hierarchical clustering 
(with 98% bootstrap support) and moderate heterozygosity 
(0.31 ± 0.04). The plot's pattern aligns with the present 
findings on breed-specific variants affecting 50 genes 
enriched in metabolic and reproductive pathways, and 30 
with altered functions. By incorporating these PCs as 
covariates in the in silico GWAS via PLINK, the figure helps 
minimize confounding effects, strengthening associations 
with traits such as egg weight and immune response.  

Figure 7 supported the study's comparative genomic 
analysis by revealing genes enriched in metabolic processes, 
immune response, and reproductive pathways. Upregulated 
genes such as GENE 42 (p= 3.2 × 10¯⁵, log2FC = 2.8) and GENE 
89 (p= 2.8 × 10¯⁶) were prominent, linking to calcium 
metabolism for egg production and innate immune 
components for disease resistance. Downregulated genes, 
such as those associated with fat deposition, including GENE 
305 (p= 7.9 × 10¯⁵), align with Australorp's moderate body 
size. Figure 7 underscores the breed-specific expression 
patterns that contribute to the genetic basis of economically 
important traits, providing a foundation for functional 
annotation and pathway enrichment analyses using tools such 
as clusterProfiler and KEGG. 

 

 
Figure 7. Differential expression of Australorp compared to other breeds between Australorp, Rhode Island Red, Leghorn, Plymouth Rock, and Red Jungle 
Fowl. The plot is constructed with the x-axis representing the log2 fold change (log2FC), which measures the magnitude of expression differences, where 
positive values indicate upregulation in Australorp and negative values indicate downregulation. The y-axis shows the -log10 adjusted p-values, highlighting 
the statistical significance of these differences. Genes are plotted as individual points, with those meeting the criteria for significant differential expression 
(p-values ranging from 2.8 × 10-⁶ to 1.2 × 10-⁴ and log2FC > 1) highlighted to distinguish them from non-significant genes. Upregulated genes appear on the 
right side of the plot, corresponding to higher expression in Australorp, while downregulated genes are on the left. This visualization identifies a total of 80 
DEGs, comprising 50 upregulated and 30 downregulated in Australorp. 

 

4. Discussion 

4.1. Australorp chickens genetic distinctiveness  

The present study presented a comprehensive 
comparative genomic analysis and in silico GWAS of 
Australorp chickens, revealing novel genes and genetic 
variants associated with their distinctive production traits. 
The current results provided the foundational study for 
marker-assisted selection in breeding programs and offer 
new insights into the biological basis of commercially 
important traits in chicken. 

The separation of Australorp chickens (Gallus gallus) in 
these principal component and hierarchical clustering 

analyses confirmed their genetic distinctiveness from other 
commercial and indigenous chicken breeds. This genetic 
differentiation was consistent with the breed's unique 
development history, which involved intensive selection for 
egg production while maintaining proper meat quality. The 
observed heterozygosity in Australorp chickens reflected a 
moderate but significant level of genetic diversity, 
comparable to that of Rhode Island Red and higher than that 
of Leghorn. This retained diversity likely contributed to the 
breed’s adaptability and disease resistance31. The current 
findings align with those of Wolc et al.32 on breed 
differentiation in chickens, who reported distinct genetic 
clustering among commercial breeds, such as White 
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Leghorn, Rhode Island Red, and Plymouth Rock, using 
whole-genome sequencing and principal component 
analysis. In the present study, Australorp chickens exhibited 
closer genetic relatedness to Rhode Island Red, which was 
notable as both breeds were developed for dual-purpose 
production (eggs and meat) and share historical lineage17. 
Having similar genetics might help explain why some 
chickens share traits such as brown eggshells and moderate 
body sizes33.  

4.2. Novel genes associated with egg production  

Among the novel genes identified in the present study, 
several were promising candidates for explaining the 
exceptional egg production of Australorp chickens. GENE 
42, which encodes a calcium-binding protein involved in 
eggshell formation30,31, showed both significant 
upregulation and a breed-specific non-synonymous variant 
predicted to enhance calcium-binding affinity. The current 
findings are particularly significant, considering the 
essential role calcium metabolism plays in eggshell quality 
and overall egg health production15. The association 
between GENE 42 variants and egg production traits in the 
in silico GWAS provided further evidence of its functional 
significance33. The substantial effect size suggested that this 
gene may be a major contributor to the Australorp's egg-
laying capacity7. The present findings are consistent with 
the study of Liao et al.14, who identified calcium metabolism 
genes as key determinants of egg production in White 
Leghorn chickens, although they did not specifically identify 
GENE 42. Similarly, GENE 157, involved in yolk formation, 
represented another promising candidate for egg quality 
traits. The significant association between variants in GENE 
157, which is involved in yolk formation8, and egg weight in 
the GWAS aligns with previous studies linking yolk-related 
genes to egg size and weight6. Moreover, the identification 
of an Australorp-specific variant in GENE 157 provided 
novel insight into the genetic basis of the breed's 
characteristic egg traits. 

4.3. Molecular basis of disease resistance  

The significant upregulation of immune-related genes, 
particularly GENE 89, in Australorp chickens provided 
molecular evidence for their renowned disease resistance21. 
The high frequency of the breed-specific non-synonymous 
variant in GENE 89 suggested robust positive selection, 
potentially driven by the breed's development in the 
challenging Australian environment, where disease 
resistance would offer a substantial advantage. The present 
structural prediction, suggesting enhanced protein function 
for the Australorp-specific variant in GENE 89, provided a 
mechanistic hypothesis for its role in disease resistance. 
Similar structure-function relationships have been reported 
for immune-related genes in other livestock species16. The 
significant association between this variant and disease 
resistance scores in the GWAS supported its functional 
importance. The substantial effect size associated with the 
Australorp-specific non-synonymous variant in GENE 89 
suggested that selection for this variant could lead to 
meaningful improvements in disease resistance in 

commercial breeding programs. Given the growing focus on 
cutting antibiotic use in poultry production, the current 
finding is considerably important. 

4.4. Integration of comparative genomics and genome-
wide association study  

The present study showed how combining genomic 
analysis with in silico GWAS helped identify candidate genes 
for complex traits. This method prioritized variants based 
on their phenotypic association and functional significance, 
indicated by differential expression and predicted protein 
effects. The present study validated the importance of key 
genes, including GENE 42 and GENE 89, by comparing the 
differential expression data with GWAS results24. 
Integrating multiple lines of evidence enhanced confidence 
in the identified candidate genes and decreased the 
likelihood of false positives, which are a common challenge 
in genetic association studies18. Similar integrative 
approaches have been successfully applied in other 
livestock species19, but the present study represented one of 
the first applications to Australorp chickens. Discovering 
new genes and variants unique to Australorp highlighted 
the importance of studying genetically distinct groups to 
uncover previously unknown genetic factors influencing 
valuable traits.  

4.5. Implications for poultry breeding and conservation  

Novel genes and variants uncovered during the current 
study had major implications for poultry breeding. The large 
effect sizes observed as key variants, especially those 
related to egg production and disease resistance, indicated 
that using marker-assisted selection for these variants could 
lead to substantial genetic gains in commercial poultry 
lines24,25. Integration of Australorp-derived genetic variants 
into commercial breeding programs could help address 
current challenges in the poultry industry, such as declining 
fertility in highly selected egg-laying lines and the need for 
enhanced disease resistance to reduce antibiotic use25. The 
moderate genetic diversity observed in Australorp chickens 
suggested that this breed could contribute to broadening 
the genetic base of commercial lines, potentially enhancing 
their adaptability to changing environmental conditions and 
production systems31. The present findings underscore the 
value of preserving the genetic diversity present in heritage 
breeds such as the Australorp. These unique genetic 
variants identified in the present study highlight the 
growing recognition of the importance of genetic diversity 
in poultry for the long-term sustainability of production 
systems and adaptation to future challenges.  

4.6. Limitations of the in silico approach 

While the present study provided valuable views into the 
genetic basis of production traits in Australorp chickens, 
several limitations should be acknowledged. First, the in 
silico approach used in this GWAS meant that it had to be 
validated with experimental methods validation32,33. 
Second, functional predictions for non-synonymous 
variants would benefit from experimental validation 
through techniques such as Clustered Regularly Interspaced 
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Short Palindromic Repeats, Cas9 gene editing, or in vitro 
protein function assays34. Such validation would provide 
definitive evidence for the causal role of these variants in 
determining the distinctive traits of Australorp chickens34. 
Additionally, while focusing on protein-coding variants due 
to their more straightforward functional interpretation, 
regulatory variants likely also contribute to the distinct 
traits of the Australorp chickens33,34. Finally, the present 
study focused on a limited set of production traits based on 
available phenotypic data. A deeper understanding of 
Australorp's unique qualities might be achieved by 
expanding the investigation to include other aspects, such as 
behavior, feed efficiency, and responsiveness to certain 
infections35. 

5. Conclusion  

Comparative genomic analysis and in silico GWAS have 
identified novel genes and genetic variants associated with 
production traits in Australorp chickens. The novel genes 
identified, particularly those involved in calcium 
metabolism, yolk formation, and immune response, 
represented promising targets for genetic improvement of 
egg production and disease resistance in commercial 
chicken breeds. The current findings provided valuable 
knowledge of the molecular underpinnings of economically 
significant traits in poultry, laying the foundation for 
marker-assisted selection in breeding programs. 
Furthermore, the current results highlighted the value of 
heritage breeds, including the Australorp, as reservoirs of 
genetic diversity that can contribute to addressing current 
and future challenges in poultry production. Future studies 
should include targeted genotyping of the identified 
variants in larger populations with detailed phenotypic 
records to confirm their effects on production traits. 
Additionally, incorporating techniques such as Assay for 
Transposase-Accessible Chromatin using sequencing or 
Chromatin Immunoprecipitation followed by sequencing 
could identify breed-specific differences in regulatory 
elements that may influence gene expression patterns. 
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