Treatment of Avian Trichomoniasis by Tannin-based Herbal mixture (Artemisia Annua, Quercus infectoria, and Allium Sativum)

Main Article Content

Soheil Sadr
Seyed Ali Ghafouri
Abolfazl Ghaniei
Danial Jami Moharreri
Marzieh Zeinali
Nasim Qaemifar
Parian Poorjafari Jafroodi
Zahra Hajiannezhad
Amir Hossein Atazade

Abstract

Introduction: Trichomonas gallinae (T. gallinae) infects numerous species of birds worldwide. Many antiprotozoal drugs have been utilized for therapeutic purposes. Herbal plants extracts do not result in drug resistance or tissue residue; therefore, they are a dependable and safe substitute for treating trichomoniasis. The current study, the antitrichomonal properties of three herbal plants (Quercus infectoria, Artemisia annua, and Allium sativum) were compared to those of metronidazole in pigeons.


Materials and methods: In this experiment, 32 pigeons were used, each of which was divided into four groups with four replicates. All groups were experimentally infected with T. gallinae except for group D. Group A was treated with a herbal mixture (80% Quercus infectoria extract, 11% Artemisia annua extract, and 9% Allium sativum extract [standardized to 8% total tannic acid]; Coccyphyt-L®; Makian Dam Pars Science-Based Company), while Group B was given metronidazole. The positive control group C was experimentally infected but not treated with T. gallinae, while group D remained healthy throughout the experiment. The experiment consisted of a performance index, weight gain, wet mount, and biochemical and hematological examination.


Results: Compared to metronidazole, the treatment with a herbal mixture significantly reduced the pathogenic effects of Trichomonas spp. After a week of treatment, chickens in group A were nearly healthy and, in some respects, superior to those in the metronidazole treatment group.


Conclusion: In conclusion, the antiprotozoal properties of the aforementioned herbal mixture suggest its use as an alternative antitrichomonal agent to chemotherapeutic drugs in trichomoniasis treatment.

Article Details

How to Cite
Sadr, S., Ghafouri, S. A., Ghaniei, A., Jami Moharreri, D., Zeinali, M., Qaemifar, N., Poorjafari Jafroodi, P., Hajiannezhad, Z., & Atazade, A. H. (2022). Treatment of Avian Trichomoniasis by Tannin-based Herbal mixture (Artemisia Annua, Quercus infectoria, and Allium Sativum). Journal of World’s Poultry Science, 1(2), 32–39. https://doi.org/10.58803/JWPS.2022.1.2.01
Section
Original Articles

References

Arfin S, Sayeed M A, Sultana S, Dash A K, and Hossen M L. Prevalence of Trichomonas gallinae infection in Pigeon of Jessore District, Bangladesh. J Adv Vet Anim Res. 2019 Oct; 6(4):549-552. DOI: https://doi.org/10.5455/javar.2019.f381

Stockdale JE, Dunn JC, Goodman SJ, Morris AJ, Sheehan DK, Grice PV, et al. The protozoan parasite Trichomonas gallinae causes adult and nestling mortality in a declining population of European Turtle Doves, Streptopelia turtur. Parasitology, 2015 Mar; 142(3):490-498. DOI: https://doi.org/10.1017/s0031182014001474

Marx M, Reiner G, Willems H, Rocha G, Hillerich K, Masello J F, et al. High prevalence of Trichomonas gallinae in wild columbids across western and southern Europe. Parasit Vectors, 2017 May; 10(1):242. Available at: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-017-2170-0

Santos HM, Tsai CY, Catulin GEM, Trangia KCG, Tayo LL, Liu HJ, et al. Common bacterial, viral, and parasitic diseases in pigeons (Columba livia): A review of diagnostic and treatment strategies. Vet Microbiol. 2020 Aug; 247:108779. DOI: https://doi.org/10.1016/j.vetmic.2020.108779

Feng SY, Chang H, Li FH, Wang CM, Luo J, and He H X. Prevalence and molecular characterization of Trichomonas gallinae from domestic pigeons in Beijing, China. Infect Genet Evol. 2018 Nov; 65: 369-372. DOI: https://doi.org/10.1016/j.meegid.2018.08.021

Lashkenari MS, Nikpay A, Soltani M, and Gerayeli A. In vitro antiprotozoal activity of poly (rhodanine)-coated zinc oxide nanoparticles against Trichomonas gallinae. Dispers Sci Technol. 2019 May; 41(4): 495-502. DOI: https://doi.org/10.1080/01932691.2019.1591972

Martínez-Herrero MC, Sansano-Maestre J, Ortega J, González F, López-Márquez I, Gómez-Muñoz MT, et al. Oral trichomonosis: Description and severity of lesions in birds in Spain. Vet Parasitol. 2020 Jul; 283:109196. DOI: https://doi.org/10.1016/j.vetpar.2020.109196

Quillfeldt P, Schumm YR, Marek C, Mader V, Fischer D, and Marx M. Prevalence and genotyping of Trichomonas infections in wild birds in central Germany. PloS one, 2018 Aug; 13(8):e0200798. DOI: https://doi.org/10.1371/journal.pone.0200798

Tabari MA, Poźniak B, Abrishami A, Moradpour AA, Shahavi MH, Kazemi S, et al. Antitrichomonal activity of metronidazole-loaded lactoferrin nanoparticles in pigeon trichomoniasis. Parasitol Res. 2021 Sep; 120(9):3263-3272. DOI: https://doi.org/10.1007/s00436-021-07263-z

Hashemi N, Ommi D, Kheyri P, Khamesipour F, Setzer WN, and Benchimol M. A review study on the anti-trichomonas activities of medicinal plants. Int J Parasitol Drugs Drug Resist. 2021 Apr; 15:92-104. DOI: https://doi.org/10.1016/j.ijpddr.2021.01.002

Yunessnia lehi A, Shagholani H, Ghorbani M, Nikpay A, Soleimani lashkenarie M, and Soltani M. Chitosan nanocapsule-mounted cellulose nanofibrils as nanoships for smart drug delivery systems and treatment of avian trichomoniasis. J Taiwan Inst Chem Eng. 2019 Feb; 95:290-299. DOI: https://doi.org/10.1016/j.jtice.2018.07.014

Yuan J, Ni A, Li Y, Bian S, Liu Y, Wang P, et al. Transcriptome Analysis Revealed Potential Mechanisms of Resistance to Trichomoniasis gallinae Infection in Pigeon (Columba livia). Front vet sci. 2021 Sep; 8:672270. DOI: https://doi.org/10.3389/fvets.2021.672270

Youssefi M, Tabari MA, and Moghadamnia A. In vitro and in vivo activity of Artemisia sieberi against Trichomonas gallinae. Iran

J Vet Res, 2017 Winter; 18(1):25-29. Available at: https://pubmed.ncbi.nlm.nih.gov/28588629/

Nikpay A, and Soltani M. In vitro anti-parasitic activities of Pulicaria dysenterica and Lycopus europaeus methanolic extracts against Trichomonas gallinae. J Herbmed Pharmacol. 2018; 7(2):112-118. DOI: https://doi.org/10.15171/jhp.2018.19

Tabari M, Youssefi M, and Moghadamnia A. Antitrichomonal activity of Peganum harmala alkaloid extract against trichomoniasis in pigeon (Columba livia domestica). Br Poult Sci. 2017 Jun; 58(3):236-241. DOI: https://doi.org/10.1080/00071668.2017.1280725

Tabari MA, and Youssefi MR. In vitro and in vivo evaluations of Pelargonium roseum essential oil activity against Trichomonas gallinae. Avicenna J Phytomed. 2018 Mar; 8(2), 136-142. Available at: https://pubmed.ncbi.nlm.nih.gov/29632844/

Ji F, Zhang D, Shao Y, Yu X, Liu X, Shan D, et al. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci Rep, 2020 Nov; 10:19978. Available at: https://www.nature.com/articles/s41598-020-76821-9

Farinacci P, Mevissen M, Ayrle H, Maurer V, Dalgaard TS, Melzig MF, et al. Medicinal plants for prophylaxis and therapy of common infectious diseases in poultry–a systematic review of in vivo studies. Planta Med. 2021 Mar;88(3-4):200-217. DOI: https://doi.org/10.1055/a-1543-5502

Malekifard F, Tavassoli M, and Alimoradi M. In vitro assessment of anti-Trichomonas effects of Zingiber officinale and Lavandula angustifolia alcoholic extracts on Trichomonas gallinae. Vet Res Forum. 2021 Winter; 12(1):95-100. DOI: https://doi.org/10.30466/vrf.2019.102620.2444

Rezaee H, Ghorbani M, Nikpay A, and Soltani M. Tannic acid-coated zeolite Y nanoparticles as novel drug nanocarrier with controlled release behavior and anti-protozoan activity against Trichomonas gallinae. Dispers Sci Technol. 2018 Oct; 40(4):587-593. DOI: https://doi.org/10.1080/01932691.2018.1475240

Ardestani MM, Aliahmadi A, Toliat T, Dalimi A, Momeni Z, and Rahimi R. Antimicrobial activity of Quercus infectoria gall and its active constituent, gallic acid, against vaginal pathogens. Tradit Integrat Med. 2019 Winter; 4(1):12-21. DOI: https://doi.org/10.18502/tim.v4i1.1664

Elham A, Arken M, Kalimanjan G, Arkin A, and Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus infectoria galls. J Ethnopharmacol. 2021 Jun; 273:113592. DOI: https://doi.org/10.1016/j.jep.2020.113592

Tonda R, Rubach J, Lumpkins B, Mathis G, and Poss M. Effects of tannic acid extract on performance and intestinal health of broiler chickens following coccidiosis vaccination and/or a mixed-species Eimeria challenge. Poult Sci. 2018 Sep; 97(9):3031-3042. DOI: https://doi.org/10.3382/ps/pey158

Burlacu E, Nisca A, and Tanase C. A comprehensive review of phytochemistry and biological activities of Quercus species. Forests. 2020 Aug; 11(9):904. DOI: https://doi.org/10.3390/f11090904

Huang Q, Liu X, Zhao G, Hu T, and Wang Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim Nutr. 2018 Jun; 4(2):137-150. DOI: https://doi.org/10.1016/j.aninu.2017.09.004

Jamil M, Aleem M T, Shaukat A, Khan A, Mohsin M, Rehman T U, et al. Medicinal Plants as an Alternative to Control Poultry Parasitic Diseases. Life. 2022 Mar ; 12(3):449. DOI: https://doi.org/10.3390/life12030449

Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha C, and Kumar CS. Syringic acid (SA)‒a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomedicine & Pharmacotherapy, 2018 Dec; 108:547-557. DOI: https://doi.org/10.1016/j.biopha.2018.09.069

Tayel AA, El-Sedfy MA, Ibrahim AI, and Moussa SH. Application of Quercus infectoria extract as a natural antimicrobial agent for chicken egg decontamination. Rev Argent Microbiol. 2018 Oct-Dec; 50(4):391-397. DOI: https://doi.org/10.1016/j.ram.2017.12.003

van der Kooy F, and Sullivan SE. The complexity of medicinal plants: the traditional Artemisia annua formulation, current status and future perspectives. J Ethnopharmacol. 2013 Oct; 150(1):1-13. DOI: https://doi.org/10.1016/j.jep.2013.08.021

Shahrajabian MH, Wenli S, and Cheng Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Not Bot Horti Agrobot. 2020 Dec; 48(4):1719-1741. DOI: https://doi.org/10.15835/nbha48412002

Feng X, Cao S, Qiu F, and Zhang B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol Ther. 2020 Dec ; 216:107650. DOI: https://doi.org/10.1016/j.pharmthera.2020.107650

Kim JT, Park JY, Seo HS, Oh HG, Noh JW, Kim JH, Kim DY, and Youn HJ. In vitro antiprotozoal effects of artemisinin on Neospora caninum. Vet Parasitol. 2002 Jan; 103(1-2):53-63. DOI: 1016/s0304-4017(01)00580-5

Müller J, Balmer V, Winzer P, Rahman M, Manser V, Haynes RK, et al. In vitro effects of new artemisinin derivatives in Neospora caninum-infected human fibroblasts. Int J Antimicrob Agents. 2015 Jul; 46(1):88-93. DOI: https://doi.org/10.1016/j.ijantimicag.2015.02.020

Nagai A, Yokoyama N, Matsuo T, Bork S, Hirata H, Xuan X, et al. Growth-inhibitory effects of artesunate, pyrimethamine, and pamaquine against Babesia equi and Babesia caballi in in vitro cultures. Antimicrob Agents Chemother. 2003 Feb; 47(2):800-803. DOI: https://doi.org/10.1128/aac.47.2.800-803.2003

Chadwick M, Trewin H, Gawthrop F, and Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013 Jun; 14(6):12780-12805. DOI: https://doi.org/10.3390/ijms140612780

Ferreira JF, Luthria DL, Sasaki T, and Heyerick A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules. 2010 Apr; 15(5):3135-3170. DOI: https://doi.org/10.3390/molecules15053135

Yuan H, Ma Q, Cui H, Liu G, Zhao X, Li W, et al. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017 Jul; 22(7):1135. DOI: https://doi.org/10.3390/molecules22071135

Nigam M, Atanassova M, Mishra A P, Pezzani R, Devkota H P, Plygun S, et al. Bioactive compounds and health benefits of Artemisia

species. Nat Prod Commun. 2019 Jul; 14(7):1-7. DOI: https://doi.org/10.1177/1934578X19850354

Alloui MN, Agabou A, and Alloui N. Application of herbs and phytogenic feed additives in poultry production-A Review.

Glob J Anim Sci. 2014 Jun; 2(3):234-243. Avaialble at: http://archives.gjasr.com/index.php/GJASR/article/download/57/155

Brzóska F, Sliwinski B, Michalik-Rutkowska O, and Sliwa J. The effect of garlic (Allium sativum L.) on growth performance, mortality rate, meat and blood parameters in broilers. Ann Anim Sci. 2015 Jul; 15(4):961-975.. DOI: https://doi.org/10.1515/aoas-2015-0052

Sunu P, Sunarti D, Mahfudz LD, and Yunianto VD. Effect of synbiotic from Allium sativum and Lactobacillus acidophilus on hematological indices, antioxidative status and intestinal ecology of broiler chicken. J Saudi Soc Agric Sci. 2021 Feb; 20(2):103-110. DOI: https://doi.org/10.1016/j.jssas.2020.12.005

Espinoza T, Valencia E, Albarrán M, Díaz D, Quevedo RA, Díaz O, et al. Garlic (Allium sativum L) and Its beneficial properties for health:

A review. Agroind sci. 2020; 10(1):103-115. DOI: https://doi.org/10.17268/agroind.sci.2020.01.14

Ezeorba TPC, Chukwudozie KI, Ezema CA, Anaduaka EG, Nweze EJ, and Okeke ES Potentials for health and therapeutic benefits of garlic essential oils: Recent findings and future prospects. Pharmacol

Res-Modern Chinese Med, 2022 Jun; 3:100075. DOI: https://doi.org/10.1016/j.prmcm.2022.100075

Ganas P, Jaskulska B, Lawson B, Zadravec M, Hess M, and Bilic I. Multi-locus sequence typing confirms the clonality of Trichomonas gallinae isolates circulating in European finches. Parasitology. 2014 Apr; 141(5): 652-661. DOI: https://doi.org/10.1017/s0031182013002023

Seddiek SA, El-Shorbagy MM, Khater HF, and Ali AM. The antitrichomonal efficacy of garlic and metronidazole against Trichomonas gallinae infecting domestic pigeons. Parasitol Res, 2014 Apr; 113(4):1319-1329. DOI: https://doi.org/10.1007/s00436-014-3771-6

Baccega B, Alves MSD, Neves RN, Velho MC, de Godoi SN, Ourique AF, et al. Free essential oils and nanostructured on Trichomonas gallinae trophozoites. Disciplinarum Scientia | Naturais e Tecnológicas, 2019; 20(3):337-354.

Rouffaer L, Adriaensen C, De Boeck C, Claerebout E, and Martel A. Racing pigeons: a reservoir for nitro-imidazole–resistant Trichomonas gallinae. J Parasitol. 2014 Jun; 100(3): 360-363. DOI: https://doi.org/10.1645/13-359.1

El-Saber Batiha G, Magdy Beshbishy AG, Wasef L, Elewa YHA, Al-Sagan A, Abd El-Hack ME, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 2020 Mar; 12(3):872. DOI: https://doi.org/10.3390/nu12030872

Chan JYY, Yuen ACY, Chan RYK, and Chan SW. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother Res. 2013 May; 27(5):637-646. DOI: https://doi.org/10.1002/ptr.4796

Miron T, Rabinkov A, Mirelman D, Wilchek M, and Weiner L. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta. 2000 Jan; 1463(1):20-30. DOI: https://doi.org/10.1016/s0005-2736(99)00174-1

Coppi A, Cabinian M, Mirelman D, and Sinnis P. Antimalarial activity of allicin, a biologically active compound from garlic cloves. Antimicrob Agents Chemother, 2006 May; 50(5):1731-1737. DOI: https://doi.org/10.1128/aac.50.5.1731-1737.2006

Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, et al. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol. 2020 Oct; 104: 219-234. DOI: https://doi.org/10.1016/j.tifs.2020.08.006

Ashfaq F, Ali Q, Haider M, Hafeez M, and Malik A. Therapeutic activities of garlic constituent phytochemicals. Biol Clin Sci Res J. 2021 Feb; 2021:53 . Available at: https://bcsrj.com/ojs/index.php/bcsrj/article/view/53

Kovarovič J, Bystricka J, Vollmannova A, Toth T, and Brindza J. Biologically valuable substances in garlic (Allium sativum L.)–A review. J Cent Eur Agric. 2019 ; 20(1):292-304. DOI: https://doi.org/10.5513/JCEA01/20.1.2304

Zenner L, Callait M, Granier C, and Chauve C. In vitro effect of essential oils from Cinnamomum aromaticum, Citrus limon and Allium sativum on two intestinal flagellates of poultry, Tetratrichomonas gallinarum and Histomonas meleagridis. Parasite. 2003 Jun; 10(2):153-157. DOI: https://doi.org/10.1051/parasite/2003102153

Gaafar MR. Efficacy of Allium sativum (garlic) against experimental cryptosporidiosis. Alexandria J Med. 2019 May: 48(1):59-66. DOI: https://doi.org/10.1016/j.ajme.2011.12.003

Ayrle H, Mevissen M, Kaske M, Nathues H, Gruetzner N, Melzig M, et al. Medicinal plants–prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review. BMC Vet Res, 2016 Jun; 12:89. DOI: https://doi.org/10.1186/s12917-016-0714-8

Kamarudin NA, Muhamad N, Salleh NN, Tan SC. Impact of Solvent Selection on Phytochemical Content, Recovery of Tannin and Antioxidant Activity of Quercus Infectoria Galls. Pharmacognosy J. 2021; 13(5): 1195-1204. DOI: https://doi.org/10.5530/pj.2021.13.153

WA WNA, Masrah M, Hasmah A, and NJ N I. In vitro antibacterial activity of Quercus infectoria gall extracts against multidrug resistant bacteria. Trop Biomed, 2014 Dec; 31(4):680-688. Available at: https://pubmed.ncbi.nlm.nih.gov/25776593/

Fan SH, Ali NA, and Basri DF. Evaluation of analgesic activity of the methanol extract from the galls of Quercus infectoria (Olivier) in rats. Evid Based Complement Alternat Med. 2014 Aug; 2014:976764. DOI: https://doi.org/10.1155/2014/976764

Baharuddin NS, Abdullah H, and Wahab WNAWA. Anti-Candida activity of Quercus infectoria gall extracts against Candida species. J Pharm Bioallied Sci. 2015 Jan-Mar; 7(1):15-20. DOI: https://doi.org/10.4103/0975-7406.148742

Septembre-Malaterre A, Lalarizo Rakoto M, Marodon C, Bedoui Y, Nakab J, Simon E, et al. Artemisia annua, a traditional plant brought

to light. Int J Mol Sci. 2020 Jul; 21(14): 4986. DOI: https://doi.org/10.3390%2Fijms21144986

Guo S, Ma J, Xing Y, Xu Y, Jin X, Yan S, et al. Artemisia annua L. aqueous extract as an alternative to antibiotics improving growth performance and antioxidant function in broilers. Front Vet Sci. 2020 Jul; 9:934021. DOI: https://doi.org/10.3389%2Ffvets.2022.934021

Koul B, Taak P, Kumar A, Khatri T, and Sanyal I. The Artemisia genus: A review on traditional uses, phytochemical constituents, pharmacological properties and germplasm conservation. J Glycom Lipidom. 2017; 7(1):100042. DOI: https://doi.org/10.4172/2153-0637.1000142

Bilia AR, Santomauro F, Sacco C, Bergonzi MC, and Donato R. Essential oil of Artemisia annua L.: an extraordinary component with numerous antimicrobial properties. Evid Based Complement Alternat Med. 2014 Apr; 2014:159819. DOI: https://doi.org/10.1155/2014/159819

Song Z, Cheng K, Zheng X, Ahmad H, Zhang L, and Wang T. Effects of dietary supplementation with enzymatically treated Artemisia annua on growth performance, intestinal morphology, digestive enzyme activities, immunity, and antioxidant capacity of heat-stressed broilers. Poult Sci, 2018 Feb; 97(2):430-437. DOI: https://doi.org/10.3382/ps/pex312

Habibi H, Firouzi S, Nili H, Razavi M, Asadi S L, and Daneshi S. Anticoccidial effects of herbal extracts on Eimeria tenella infection in broiler chickens: In vitro and in vivo study. J Parasit Dis. 2016 Jun; 40(2):401-407. DOI: https://doi.org/10.1007/s12639-014-0517-4

Jiao J, Yang Y, Liu M, Li J, Cui Y, Yin S, et al. Artemisinin and Artemisia annua leaves alleviate Eimeria tenella infection by facilitating apoptosis of host cells and suppressing inflammatory response. Vet Parasitol. 2018 Apr; 254:172-177. DOI: https://doi.org/10.1016/j.vetpar.2018.03.017

Most read articles by the same author(s)